
Thank you very much for purchasing our HMC series products.
This manual describes the use and maintenance of the HMC series controller, basic programming

instruction, etc. Please read this manual carefully before installing, wiring, using, maintaining, and
checking the product.

Please keep this manual in a safe place and deliver it to the end user.

HMC series controller
Basic Programming Instructions Manual

Statement
The contents of this user manual are subject to change without prior notice.
If you find any suspicion, error, or omission in the content of this user manual, please contact us to

change it.
If there are any error or missing pages in this user manual, we will replace them for you.

HMC series controller programming basic instruction manual
Publisher ： Guangzhou Auctech Automation Technology Ltd
Headquarters Office：Hongshi Business Building, 11 Kehua Road, SCI-TECH Industry Park, Taihe Town,

Baiyun District, Guangzhou, CHINA

Change Log
Revision Change Information Originator Date

V1.0 New Release mxh 2021-05

V1.1 Organize content formatting and adjust table
formatting czm 2022-09

V1.2 Change of HMC Series Controller Related Manual
Form and Notes czm 2023-02

V1.3 Change the template and font of the entire manual czm 2023-06

V1.4 Change company address and related information czm 2023-09

HMC Series Controller Related Manuals
The following table shows the information, please select the manual according to your needs

No.# Manual Name Description
1 HMC Series Controller and IO Unit Selection

Manual
To understand the basic functions of controller
products

2 HMC Series Controller Software Getting
Started Manual

Software acquisition, installation, getting started
tutorial

3 HMC S3 Series Controller User Manual Explanation on the basic usage of S3 series
controllers, etc.

4 HMC S4 Series Controller User's Manual Explanation on the basic use of S4 series
controllers, etc.

5 HMC G300 Series Controller User Manual
About the basic usage and functions of the G3-
6 series controllers and other operating
instructions

6 HMC series controller basic programming
instruction manual (this book)

Understanding of the concepts and functions of
basic controller programming instructions

7 HMC series controller motion control
command manual

Understanding of basic concepts and functions
of motion control commands

*Note: All the above information can be found on the official website: www.auctech.com.cn

Table of Contents
Section 1 Safety Precautions ... 1
Section 2 Basic Instructions ... 5

2.1 List of basic instructions .. 5
Section 3 Basic Descriptions ..12

3.1 Bit Logic Instructions... 12
3.1.1 Basic logic instructions ... 12
3.1.2 Placement priority and reset priority flip-flop instructions .. 17
3.1.3 Edge detection command ...20

3.2 Timer Instructions .. 22
3.2.1 Timer ... 22

3.3 Counter Instructions .. 26
3.3.1 Introduction to Counters ... 26
3.3.2 Counter Instructions ..26

3.4 Data Processing Instructions .. 30
3.4.1 Selecting operation commands .. 30
3.4.2 Comparison Instructions ...33
3.4.3 Shift instruction ... 37

3.5 Computing Instructions ... 42
3.5.1 Assignment Instructions ..42
3.5.2 Arithmetic operations instructions ...43
3.5.3 Mathematical operation commands ... 46
3.5.4 Address operation instructions ... 58

3.6 Data Conversion Instructions ..60
3.6.1 Data type conversion instructions .. 60

3.7 Ladder Diagram (LD)/Function Block (FBD) .. 66
3.7.1 Introduction to the ladder/function block diagram programming language 66
3.7.2 Connecting elements .. 69
3.7.3 Application examples .. 79

3.8 Structured Text (ST) .. 83
3.8.1 Introduction to Structured Text Programming Languages ... 83
3.8.2 Instruction Statements ..84
3.8.3 Application examples .. 94

3.9 String commands .. 98
3.9.1 Basic Instructions ..98
3.9.2 Expansion Instructions ..103

3.10 Time/Moment command .. 111
3.10.1 Library Manager .. 111

3.11 File manipulation commands ...113
3.11.1 Library Manager .. 113

3.12 EtherCAT Communication Commands ...117
3.12.1 Read SDO parameter ETC_CO_SdoReadDword(FB) .. 117
3.12.2 Reset Module ..120

1

Section 1 Safety Precautions
 Safety Commands
 Please read and follow these safety precautions when installing, operating, or maintaining

the product.
 For personal and equipment safety, please follow all safety precautions described in the

markings and manuals on the product when installing, operating, and maintaining the product.
 The "Caution", "Warning" and "Danger" items in the manual do not represent all safety

precautions to be observed, but only in addition to all other safety precautions.
 This product should be used in an environment that meets design specifications, otherwise it

may cause a malfunction due to failure to comply with the relevant safety precautions.
 The product quality warranty does not cover abnormal function or damage to parts caused by

the regulations.
 We will not bear any legal responsibility for personal safety accidents and property damage

caused by illegal operation of the product.
Security Level Definition

Danger Indicates a potentially hazardous situation which, if not avoided,could result in
death or serious injury. Additionally, there maybesevere property damage.

Caution If not used in accordance with the regulations, may cause fires, serious
personal injury, or even death!

Warning Failure to use in accordance with the regulations may result in moderate
personal injury or minor injury, as well as the occurrence of equipment
damage!

When products arrive and are stored
Warning If the product and product accessories are damaged when opening the

box, please do not install them and contact our company or your
supplier immediately.

 Check carefully whether the arriving product and the ordered product
model match, and whether the product and product accessories are
included.

Caution Do not stack multiple of this product on top of each other as this may
cause injury or malfunction.

 Do not store in places exposed to direct sunlight, places where the
ambient temperature exceeds the temperature conditions for storage,
places where the relative humidity exceeds the humidity condition for
storage, places where there is a large temperature difference, places
where there is high condensation, places near corrosive gases, places
where there are flammable gases, places where there is a large amount
of dust, dirt, salt or metal dust, places where water, oil or medicine drip,
places where vibration or shock can affect the main body of product;
otherwise it can lead to fire, Electric shock or machine damage.

 Do not hold the cable or motor shaft for weight holding, as this may result
in injury or malfunction.

When designing the system
Danger If the rated load of current is exceeded or the load is short-circuited for a

long period of time resulting in over-current, the product may start
smoking or catch fire. safety devices such as fuses, or circuit breakers
should be set externally.

Warning Be sure to design safety circuits to ensure that the product system will
still work safely if the external power supply is lost, or the product fails.

 For safe operation of the equipment, please design external protection

2

circuits and safety mechanisms for output signals related to major
accidents.

Caution Be sure to install emergency brake circuits, protection circuits, interlock
circuits for forward and reverse operation, and position upper and lower
limit interlock switches to prevent damage to the machine in the external
circuit of the product.

 The product may shut down all outputs after detecting abnormalities in its
own system; when part of the controller circuit fails, it may cause its
output to be uncontrolled. To ensure normal operation, a suitable
external control circuit needs to be designed.

 If the output unit such as relay or transistor of the product is damaged,
the output will not be controlled to the ON or OFF state.

 The product is designed to be used in indoor, overvoltage class II
electrical environments, and its power system level should have
lightning protection devices to ensure that lightning overvoltage is not
applied to the product's power input or signal input, control output and
other ports to avoid damage to equipment.

When the product is installed
Danger Only maintenance professionals with adequate electrical knowledge and

training related to electrical equipment should install this product.
 For the product with open equipment, please install in the control cabinet

with door lock (product cabinet shell protection > IP20), only operators
with sufficient electrical knowledge and training related to electrical
equipment can open the product cabinet.

Warning When disassembling the product, the external power supply used for the
system must be completely disconnected before performing the
operation. Failure to disconnect all power supplies may result in electric
shock or product failure and malfunction.

 While dissembling the product, the power and the power indicator must
be turned off for at least 5 minutes, before disassembling the driver.
Otherwise, the residual voltage may cause electric shock.

 Do not use the product in the following places: places with dust, oil
fumes, conductive dust, corrosive gases, combustible gases; places
exposed to high temperature, condensation, wind, and rain; places with
vibration and shock. Electric shock, fire, and misuse can also cause
damage and deterioration of the product!

Caution Avoid metal shavings and wire tips falling into the ventilation holes of the
product during installation, this may cause fire, malfunction, and
misoperation.

 After installation, ensure that there is no foreign matter on the ventilation
surfaces, otherwise it may lead to poor heat dissipation and cause fire,
malfunction and misoperation.

 When installing, make a tight connection to the respective connector and
lock the product connection hook firmly. If the products are not installed
properly, it may lead to misoperation, malfunction and dislodgement.

When wiring products
Danger Only maintenance professionals with adequate electrical knowledge and

training related to electrical equipment should perform the wiring of this
product.

Warning During wiring operations, the external supply power used by the system
must be completely disconnected before operation. Failure to
disconnect all of them may result in electric shock or equipment
malfunction or misoperation.

 When powering up and running after the wiring operation, the terminal
cover that comes with the product must be installed. Failure to install the
terminal cover may result in electric shock.

3

 Check the type of interface to be connected before connecting the cable
correctly. If the wrong interface is connected or the wiring is incorrect, it
may cause the product or external equipment to malfunction.

 The cable terminals should be well insulated to ensure that the insulation
distance between the cables is not reduced after the cables are installed
to the terminal block. Otherwise, it will lead to electric shock or
equipment damage.

 Avoid metal shavings and wire tips falling into the ventilation holes of the
controller when wiring, which may cause fire, malfunction, and
misoperation!

 The bolts on the terminal blocks should be tightened within the specified
torque range. Untightened terminal bolts may result in short circuit, fire,
or malfunction. Over-tightening the bolts may damage the bolts and the
product, resulting in dislodgement, short circuit, fire, or false operation.

Caution The specification and installation method of the external wiring of the
equipment should meet the requirements of local power distribution
regulations.

 To ensure the safety of the equipment and the operator, the equipment
needs to be reliably grounded using cables of sufficient wire size.

 For connections using connectors and external devices, press fit, crimp,
or properly solder using the tool specified by the manufacturer. A poor
connection may result in a short circuit, fire, or malfunction.

 If the product is labeled to prevent foreign objects from entering the
product during wiring, such as the wiring head. Do not remove this label
during wiring operations. Before starting system operation, be sure to
remove the label to facilitate heat dissipation.

 Please do not bundle the control and communication cables with the
main circuit or power supply cables, etc. The alignment should be more
than 100mm apart, otherwise the noise may lead to misoperation.

 For applications with serious interference, please use shielded cables for
input or output of high frequency signals to improve the system's anti-
interference capability.

Before powering on the product
Danger Before powering on, please make sure the product is well installed, wired

firmly and the motor unit is allowed to restart.
 Before powering on, please confirm that the power supply meets the

product requirements to avoid causing damage to the product or starting
a fire.

 It is strictly forbidden to open the product cabinet door or product
protective cover, touch any terminals of the product, disassemble any
device or parts of the product in the energized state, otherwise there is a
risk of electric shock.

 Make sure that no one is around the product, the motor, or the machinery
before powering it on, as this may result in injury or death!

Warning After the wiring operation and parameter setting are completed, please
conduct a test run of the machine to confirm that it can operate safely,
otherwise it may lead to injury or equipment damage!

 Before powering on, please make sure that the rated voltage of the
product is the same as the power supply voltage. If the power supply
voltage is used incorrectly, there is a risk of fire!

4

When operating and maintaining
Danger Only maintenance professionals with adequate electrical knowledge and

training on electrical equipment can perform the operation and
maintenance of the products.

 Do not touch the terminals when the power is on, as this may cause
electric shock or malfunction.

 When the motor or equipment is running, please never touch its rotating
parts, otherwise it may lead to serious personal safety accidents.

Warning When cleaning the product or retightening the bolts on the terminal block
or the connector mounting bolts, the external supply power used by the
system must be completely disconnected. Failure to do so may result in
electric shock.

 When disassembling the product or connecting or removing the
communication cable, the external supply power used by the system
must be completely disconnected first. Failure to disconnect all of them
may result in electric shock or false operation.

 While dissembling the product, the power and the power indicator must
be turned off for at least 5 minutes, before disassembling the driver.
Otherwise, the residual voltage may cause electric shock.

Caution For online modification, forced output, RUN, STOP, etc., you must read
the user's manual and confirm its safety before performing the relevant
operations.

 Be sure to disconnect the power before loading and unloading expansion
cards, modules, and other components!

When the product is scrapped
Caution Please dispose of them as industrial waste; when disposing of batteries,

do so separately according to the ordinances established by each
region to avoid property damage or human injury!

 End-of-life products should be treated and recycled in accordance with
industrial waste treatment standards to avoid polluting the environment.

5

Section 2 Basic Instructions
In a programmable controller, the commands and combinations of commands that enable the CPU to

perform a certain operation or achieve a certain function are called instructions, and the collection of
instructions is called the instruction system. The instruction system is the bridge between programmable
controller hardware and software and is the basis of programmable controller programming. This section will
introduce the bit logic instructions, timer instructions, counter instructions, data processing instructions,
operation instructions, and data conversion instructions.

2.1 List of basic instructions
Total type Category Instructio

n
Name Function Summary

Bit Logic
Instructions

Basic Logic Instructions

AND And Bit ‘and’, Boolean 'and'
OR Or Bit 'or', Boolean 'or'
NOT Not Bit 'not', Boolean 'not'
XOR Exclusive Or By-bit 'iso-or', Boolean 'iso-or'

two

Set priority and reset
priority flip-flop
instructions

SR Set as priority trigger Set bistable flip-flop, set
priority

RS Reset Priority Trigger Reset bistable flip-flop, reset
priority

Edge detection
command

R_TRIG Rising edge trigger For detecting rising edges
F_TRIG Falling edge triggering For detecting falling edge

Timer
commands Timer

TP Pulse Timer Pulse Timing
TON Power-on delay timer Power on delay timing
TOF Power failure delay timer Power failure delay timing
RTC Real Time Clock Starts at the given time and

returns the current date and
time

Counter
command Counter command

CTU Increase counter Counting
CTD Less Counter Subtractive count
CTUD Increase/decrease

counter
Count up/down

Data
processing
instructions

Select operation
command

SEL Two-choice command Select one of the two input
data as output

MAX Take the maximum value Maximum value function
MIN Take the minimum value Minimum value function
LIMIT Restricted values Limit value output
MUX Multiple Choice One Multiplexer operation

Compare commands

= Equivalent When the first operand is
equal to the second operand,
the Boolean operator returns
TRUE

<> No Equivalent When the first operand is not
equal to the second operand,
the Boolean operator returns
TRUE

> Greater than When the first operand is
greater than the second
operand, the Boolean operator
returns TRUE

>= Greater than or equal to When the first operand is
greater than or equal to the
second operand, the Boolean
operator returns TRUE

< Less than When the first operand is
smaller than the second
operand, the Boolean operator
returns TRUE

<= Less than or equal to When the first operand is less
than or equal to the second
operand, the Boolean operator
returns TRUE

Shift command SHL Shift left by position The operand is shifted to the
left by bit, the left shift out bit is

6

Total type Category Instructio
n

Name Function Summary

not processed, and the right
empty bit is automatically filled
with 0

SHR Right shift by position The operand is shifted to the
right by bit, the right shift out
bit is not processed, and the
left empty bit is automatically
filled with 0

ROL Cyclic left shift The operand is cyclically
shifted left by bit, and the bit
shifted out on the left is directly
added to the lowest bit on the
right

ROR Circular right shift The operand is cyclically
shifted right by bit, and the bit
shifted out on the right is
directly added to the highest
bit on the left.

Transport
count
Refers to
make

Assignment Instructions
:= Assignment Assigning the value of a

constant or variable to another
variable

Arithmetic operations
Instruction

+ add up Addition instruction, two (or
more) variables or constants
are added together

- phase minus Subtraction instruction, two
variables or constants are
subtracted from each other

× multiply Multiply instruction, two (or
more) variables or constants
are multiplied together

/ phase division Division instruction, divide two
variables or constants

Transport
count
Refers to
make

Arithmetic operations
Instruction

MOD Remainder The remainder of dividing two
variables or constants, which
is an integer data

Mathem
atical
operatio
ns
comman
ds

Basic
Instructions

ABS Absolute value command This function instruction is
used to calculate the absolute
value of a number, and has no
relationship with the positive or
negative sign of the number

SQR Square root command Square root of a non-negative
real number

EXP Exponential Returns the power of e (the
base of the natural logarithm),
e being a constant of 2.71828

LN Natural logarithm
instruction

Returns the natural logarithm
of a number

LOG Common logarithmic
instructions

Returns the logarithm of the
base 10

SIN Sine command Sine function
COS Cosine command cosine function
ACOS Inverse cosine command Cosine radian (inverse cosine

function)
ASIN Chord command anyway Sine of arc (inverse sine

function)
TAN Tangent command tangent function
ATAN Cut command anyway Tangent radian (inverse

tangent function)

Expansion
Instructions

ATAN2 Angle of the point X Azimuth from the origin to the
point (x,y), i.e. the angle with
the x-axis

Ceil Rounding up Rounding up to integer
CRC16Chec
k

16-bit CRC check 16-bit CRC check

DegToRad Angle to arc Angle to arc
Floor Rounding down Rounding down to the nearest

integer
Fmod Floating point data

modulus
Floating point data modulus

7

Total type Category Instructio
n

Name Function Summary

ParamPerio
dLimits

Periodic value processing,
automatic modulus,
negative values to positive

Periodic value processing,
automatic modulus, negative
values to positive

PeriodLimit Periodic value processing Periodic value processing

Transport
count
Refers to
make

Mathem
atical
operatio
ns
comman
ds

Expansion
Instructions

RadToDeg Radian to Degree Radian to Angle degree

Round Float rounding Rounding of float numbers,
with decimal places reserved

Saturation Saturation function Saturation function with upper
and lower limits of 1, -1

Signum Positive and negative sign
functions

Positive and negative number
function, positive number
return 1.0, negative number
return -1.0, zero return 0.

Statistics_N
_Lreal

Find the average of the
last N data

The average of the last N
times data, less than N times
to take the average of all
recent data, earlier than N
times data will be cleared

Angel Find the angle between
the three points

Find the angle of three points
using the dot product principle

Cross Find the cross product Find the cross product
Dot Find vector dot product Find the value of the vector op

point multiplied by the vector
oq

INV Find the inverse matrix of
matrix a

Inverse matrix of nth-order real
matrix a by the all-choice
principal Gaussian-
approximation elimination
method

InvertGauss
Jordan

Find the inverse matrix of
matrix a

Inverse matrix of nth-order real
matrix a by the all-choice
principal Gaussian-
approximation elimination
method

InvM Find the generalized
inverse matrix

Find the generalized inverse
matrix

MatrixAdd Find matrix plus Find matrix plus
MatrixMultipl
yN

Find matrix multiplication Find matrix multiplication

MatrixSub Find the matrix minus Find the matrix minus
MatrixTranp Matrix transpose Matrix transpose
Norm Find the norm of the

matrix
Find the matrix parametrization

Address operation
instructions

SIZEOF Data Type Size Perform this function to
determine the number of bytes
required for the given data
type

ADR Address Operators Get the memory address of the
input variable and output

BITADR Bit Address Operators Returns the bit address
information offset of the
allocated variable

Data
conversion
instructions

Data type conversion
instructions

BCD_TO_
BYTE

BCD to BYTE BCD to BYTE

BCD_TO_
DWORD

BCD to DWORD BCD to DWORD

BCD_TO_
INT

BCD to INT BCD to INT

BCD_TO_
WORD

BCD to WORD BCD to WORD

BYTE_TO_
BCD

BYTE to BCD BYTE to BCD

DWORD_T
O_BCD

DWORD to BCD DWORD to BCD

INT_TO
_BCD

INT to BCD INT to BCD

WORD_TO_
BCD

WORD to BCD WORD to BCD

8

Total type Category Instructio
n

Name Function Summary

BOOL_TO_
INT

BOOL to INT BOOL to INT

BOOL_TO
_STRING

BOOL to STRING BOOL to STRING

BOOL_TO
_TIME

BOOL to TIME BOOL to TIME

BOOL_TO
_TOD

BOOL to TOD BOOL to TOD

BOOL_TO
_DATA

BOOL to DATA BOOL to DATA

BOOL_TO_
DT

BOOL to DT BOOL to DTime

BYTE_TO_
BOOL

BYTE to BOOL BYTE to BOOL

BYTE_TO_
INT

BYTE to INT BYTE to INT

BYTE_TO_
TIME

BYTE to TIME BYTE to TIME

BYTE_TO
_DT

BYTE to DT BYTE to DTime

Data
conversion
instructions

Data type conversion
instructions

BYTE_TO_
REAL

BYTE to REAL BYTE to REAL

BYTE_TO_
STRING

BYTE to STRING BYTE to STRING

WORD_TO_
USINT

WORD to USINT WORD to USINT

WORD_TO_
TIME

WORD to TIME WORD to TIME

WORD_TO_
DT

WORD to DT WORD to DTime

REAL_TO_
INT

REAL to INT REAL to INT

TIME_TO_
STRING

TIME to STRING TIME to STRING

TIME_TO_
DWORD

TIME to DWORD TIME to DWORD

DT_TO_
BYTE

DT to BYTE DT to BYTE

DATA_TO
_INT

DATA to INT DATA to INT

Ladder
diagram
(LD)/functio
n block
(FBD)
instruction

Connecting elements

Contacts

Normally open contacts Normally open contacts
Normally closed contacts Normally closed contacts
Insert right contact Insert right contact
Insert parallel lower
normally open contact

Insert parallel lower normally
open contact

Insert parallel lower
normally closed contact

Insert parallel lower normally
closed contact

Inserted in parallel with
the upper normally open
contact

Inserted in parallel with the
upper normally open contact

Coils
Coils Coils
Positioning coil Positioning coil
Reset Reset

Ladder
diagram
(LD)/functio
n block
(FBD)
instruction

Connecting elements Functions/
Function
Blocks

Insert operator block Insert operator block
Insert Empty Block Insert empty Block
Insertion of an operator
block with EN/ENO

Insertion of an operator block
with EN/ENO

Insert with EN/EN0 Insert with EN/EN0

Structured
Text (ST)
Instructions

Comma
nd
stateme
nts

Assignment
Statements

:= Statement assignment Assign the data on the right to
the data on the left

Function
and function
block
control
statements

Function
block/functio
n name ();

For function/function block
control statements

Function block and function
calling format

Select
statement

IF IF Selection Judgment statement, meet the
condition to execute. If

9

Total type Category Instructio
n

Name Function Summary

condition then, end_if end
CASE CASE Selection Select statement. Case select

condition of, end_case end
Iterative
Statements

FOR FOR loop For loop, e.g. for I :=0 to 100
by 1

WHILE WHILE loop While(condition) {}, satisfies
the condition and keeps
executing, but does not exit

REPEAT REPEAT loop REPAEAT<command>UNTIL<
Boolean
expression>END_REPEAT.

Jump
statements

EXIT Exit Exit current loop
CONTINUE Continue Continue to implement
JMP Jump Jump Instructions

Return
statement

RETURN Back Returns the result of the
function. Or exit to another
location

NULL NULL
statement

Empty statements Judgment condition is null,
return null

String
command

String
comman
d

Basic
Instructions

CONCAT Concat Concatenate two strings
DELETE Delete Remove multiple characters

from a string
FIND Find Search for the position of a

partial string in a string

String
command

String
comman
d

Basic
Instructions

INSERT Insert Inserting a string into another
string at a specific location

LEFT Left of string Returns the number of specific
characters in the string starting
from the left

LEN Length of string Returns the number of
characters in the string

MID Number of specific
characters at specific
locations

Returns the number of
characters in a string from a
specific position

REPLACE Replace string Replace a specific number of
characters of a string with
another string

RIGHT Right of string Returns the number of specific
characters in the string starting
from the right

Expansion
Instructions

ByteToHexS
tring

byte to hexadecimal string Byte to hexadecimal string,
output String

HexToByte Convert hexadecimal
string to byte value

Hexadecimal string to byte
value

HexToDword Hexadecimal string to
Dword value

Hexadecimal string to Dword
long character value

IsHex Byte to hexadecimal string
conversion

Byte to hexadecimal string
conversion

Split Split String Split a string by a character,
use a string(255) array to
receive the split string related
instructions

StringToWS String to WString String to WString
Trim Remove the beginning

and end of the string or
other characters

Removes the beginning and
end of the string or other
characters. When the function
succeeds, it returns the string
with the first and last part of
the string removed

Concat_p String Splicing

String
command

String
comman
d

Expansion
Instructions

Delete_p Delete String Delete characters of the
specified length from a string

Find_p Find String Find the string from the source
string and return the position

IsSpace_p Determine the input string Determine if the input

10

Total type Category Instructio
n

Name Function Summary

character is a carriage, return
or tab, etc.

Left_p Get the string on the left Get the specified number of
characters from the left side of
the string to the target string,
starting from the first character

Len_p String length Get the length of the string
Mid_p Get a specific string Get the specified number of

characters from the source
string at the specified position
to the target string

Right_p Get the string on the right
side

Get the specified number of
characters from the right side
of the source string to the
target string

ToLower_p String to lowercase Convert English characters in
a string to lowercase

ToUpper_p String to uppercase Convert English characters in
a string to uppercase

Trim_p Delete whitespace
characters from both ends
of a string

Whitespace characters are
removed from both ends of a
string. The whitespace
characters in this context are
all whitespace characters
(space, tab, no-breakspace,
etc.) and all line terminator
characters (e.g. LF, CR, etc.)

Time/
Moment
command

Get system time
command

GetCycle
TimeMS

Get Task Period Get system time in ms

GetCycle
TimeS

Get Task Period Get system time in s

Get time type command GetTimeDT Get time type local time Get time type local time
Get string type
command

GetTimeS Get the local time of the
string type

Get the local time of the string
type

File
manipulation
commands

File Operations
Instruction

CopyFile Copy file Copy the file to the specified
path

CreateFile Create file Create a file to the specified
path

DeleteFile Delete file Specify a path to delete a file
GetFileList Get file list Get file list (return file name

only) function return value for
the number of valid files
obtained

GetFileList2 Get file list The return value of the Get
File List (with file information)
function is the number of valid
files obtained

HasFile Check the file Check if the file exists
ReadFile Read file Read file function returns the

number of bytes read from the
file Note: If the read is Chinese
characters need to use the
following function to convert

ReadFileS Read a line of data from a
file

Read a line of data from a file,
the return value is the number
of bytes read

ReadFileWS Read a line of data from a
file

Read a line of data from a file,
the return value is the number
of bytes read

WriteFile Write data to file Write data to file

EtherCAT
communicat
ion
commands

SDO Operation
Instruction

ETC_CO_
SdoRead
DWord

Read SDO parameters Read SDO parameters, read
servo parameters

ETC_CO_
SdoWrite
DWord

Write SDO parameters Write SDO parameters,
change servo parameters

Reset Module
MC_
Reset
ETCSlave

Reset ECT unit Reset ECT unit

MC_Reset Resetting shaft and drive Resetting shaft and drive

11

Total type Category Instructio
n

Name Function Summary

Drive
MC_
ResetMaster

Resetting the master Reset Master
EtherCAT_Master_SoftMotion

12

Section 3 Basic Descriptions

3.1 Bit Logic Instructions
The bit logic instructions handle the logical changes of Boolean values "1" and "0." CodeSys provides bit

logic instructions including basic logic operations, set/reset priority flip-flops and rising/falling edge detection
instructions, as listed in Table 3-1.

Bit Logic Instructions Graphical language Textualized Language Description

Bit Logic Instructions

AND And
OR Or
NOT Not

XOR Exclusive OR
SR Set as priority trigger
RS Reset Priority Trigger
R_TRIG Rising edge trigger
F_TRIG Falling edge triggering

Table 3-1 Table of graphical and textual instructions for bit logic instructions

3.1.1Basic logic instructions
The basic bit logic instructions include "AND", "OR", "NOT", and "XOR". In CodeSys, the functions can

be divided into bitwise logic operations and Boolean logic operations.
 Bitwise logic operation performs Boolean logic operation on the corresponding bits of two integer data

one by one and returns the compatible integer result.
 Boolean logic operation performs a logical operation on two Boolean type data.

3.1.1.1 "AND" by bit

Function: The "AND" instruction compares the corresponding bits of two integers. When the
corresponding bits of two numbers are 1, the corresponding result bit is "1"; when the corresponding bits of
two integers are "0" or one of them is "0", the corresponding result bit is "0". When the corresponding bit of
two integers is "0" or one of them is "0", the corresponding result bit is "0". The "with" logic is shown in Table 3
-2.

Input 1 Input 2 Results
0 0 0
0 1 0
1 0 0
1 1 1

Table 3-2 "AND" instruction logic relationship table
[Example 3.1] Create a POU, declare two integer variables iVar1 and iVar2, assign 100 and 200 to them

respectively, and perform bitwise operations on these two variables, output the result save to iResult, the
variable declaration is shown below, and the CFC programming code is shown in Figure 3.1.

Figure 3.1 Example of the "AND" logic instruction program by bit

13

Figure 3.2 By bit “AND” operation CFC program diagram
The decimal number 1 corresponds to the binary number 00000001, and the decimal number 85

corresponds to the binary number 01010101. According to the definition of the operation by bit and operation,
each individual bit is "AND" one by one, result is 00000001, which is the decimal value 1, as shown in Figure
3.2.

3.1.1.2 Boolean "AND"

The Boolean "AND" operation is used to calculate the "AND" result of two Boolean expressions. When
the result of both Boolean expressions is true, it returns true, and if one of them is false, it returns false.

[Example 3.2] Create a POU, use the Boolean "AND" operation, determine the return value of the
operation, the program is shown in Figure 3.3.

Figure 3.3 Boolean “AND” arithmetic CFC program diagram
Since 50 is indeed less than 80, the condition in the first half of the program is true, but the default value

of bVar is FALSE, so the result of 0 and 1 is 0. The program runs with the result that bResult is FALSE.

3.1.1.3 "OR" by bit

The "OR" by bit instruction compares the corresponding bits of two integers. When one of the
corresponding bits of two numbers is "1" or both are "1", the corresponding result bit is returned as "1". When
the corresponding bit of two integers is "0", the corresponding result is "0". The "OR" logic is shown in Table 3
-3.

[Example 3.3] Create a POU, perform bitwise "or" operations on the variables iVar1 and iVar2, and
perform bitwise or operations on these two variables, and output the result save to iResult, the specific
implementation program is shown in Figure 3.4

Input 1 Input 2 Results

0 0 0
0 1 1
1 0 1
1 1 1

Table 3-3 "OR" instruction logic relationship table
Procedure:

VAR
iVar1:INT:=1.
iVar2:INT:=85.
iResult:INT.

END_VAR
The final running result of the program is 85.

14

Figure 3.4 Program diagram of by-bit “OR” operation CFC

3.1.1.4 Boolean "OR"

The Boolean "OR" instruction is used to calculate the "or" result of two Boolean expressions. When one
of the two Boolean expressions returns true, the result is true; when the result of both Boolean expressions is
false, the result is false.

[Example 3.4] Create a POU, use the Boolean "or" operation, determine the return value of the operation,
the program is shown in Figure 3.5.

Procedure:
VAR

bResult:BOOL.
bVar1:BOOL.
iVar1:INT:=30.

END_VAR

Fig. 3.5 Boolean “OR” operation CFC program diagram

Since the initial value of iVar1 is 30, iVar1<80 is true, and the initial value of bVar1 is "0", so it is false, and
the final "or" logic result of one true and one false can be seen according to Table 3-3, which is true. Therefore,
the condition on the right side of the equation is true, and the result of the program is that bResult is TRUE.

3.1.1.5 "NOT" by bit

Function: Invert the logical string, change the current value from "0" to "1", or from "1" to "0 ". The by-bit
"NOT" instruction is to change the value of the quantities or constants are taken off one by one. The logic is
shown in Table 3-4.

[Example 3.5] Create a POU, use the bitwise "non-" operation, determine the return value of the
operation, the program is shown in Figure 3.6.

Input Results
0 1
1 0

Table 3-4 "NOT" instruction logic relationship table

Procedure:
VAR
byVar1: BYTE:= 1.
byVar2: BYTE.
END_VAR

15

Figure 3.6 Program diagram of “NOT” by bit CFC
Since the value of byVar1 is 1, converting it to binary will result in 00000001, and after bitwise inversion,

the result will be 111111110. The final output is 254.

3.1.1.6 Boolean "NOT"

The Boolean "NOT" instruction is used to calculate the result of a single Boolean expression. When the
input is true, the result is false. When the input is false, the result is true.

[Example 3.6] Create a POU, use the Boolean "NOT" operation, determine the return value of the
operation, the specific code is as follows.

Procedure:
VAR
bResult: BOOL.
bVar1: BOOL.
iVar1:INT:=30.
END_VAR

Figure 3.7 Boolean “NOT” operating CFC program diagram
Since the proposition 80<30 is false, the result obtained after using the “NOT” instruction to invert this

Boolean expression is true, so finally the result of bResult is True, as shown in Figure 3-7.

3.1.1.7 Bitwise "XOR”

Function: The "XOR" instruction compares the corresponding bits of two integers by bit. When the
corresponding bit of two integers is a "1" and the other is a "0", the corresponding result bit is "1". When the
corresponding bits of two integers are both "1" or both "0", the corresponding result bit is "0".

[Example 3.7] Create a POU to perform bitwise "XOR" operations on variables iVar1 and iVar2, and
output the result.

Procedure:
VAR
iVar1:INT:=1.
iVar2:INT:=85.
iResult: INT.
END_VAR

Figure 3.8 Program diagram of CFC by bit “XOR” operation

The 1 in decimal corresponds to the binary number 00000001, and the 85 in decimal corresponds to the
binary number 0101.The result is 84 according to the definition of the by-bit "iso-or" operation instruction.

According to bitwise operation. The output is "1" only when the input state of one contact is "1" and the
input state of the other contact is "0", if the state of both contacts is If the two contact states are "1" or "0" at
the same time, the output will be "0". The timing diagram is shown in 3.9.

16

Figure 3.9 Timing diagram of basic logic instructions

[Example 3.8] When decorating a bedroom, you usually choose to install a dual control switch panel. For
example, when entering the bedroom press the switch at the door IX0.1 to turn on the lamps, go to bed and
do not want to get up, there is also a switch IX0.2 at the head of the bed to control the bedroom lights QX0.1.
The switch at the door of the bedroom and the switch at the head of the bed at the same time can
independently switch the bedroom lights, please use bit logic instructions to achieve this function.

Procedure:

Figure 3.10 Example of the use of “XOR” instruction
[Example 3.9] A device works with three fans to cool the heat. When the equipment is in operation, the

three fans rotate normally, the equipment cooling status indicator is always on; when any two fans rotate, the
equipment cooling status indicator flashes at a frequency of 2Hz; when only one fan rotates, the equipment
cooling status indicator flashes at a frequency of 0.5Hz; if all three fans do not rotate, the equipment cooling
status indicator is not on. I/O address assignment the control program is shown in Figure 3.11.

Address Description Address Description
%IX0.0 No.1 fan feedback signal %IX0.0 Equipment cooling status indicator
%IX0.1 No.2 fan feedback signal %MX0.0 0.5Hz pulse blink signal
%IX0.2 No.3 fan feedback signal %MX0.1 2Hz pulse blink signal

The procedure is as follows:

17

Figure 3.11 Example of fan cooling control program

3.1.1.8 Boolean "XOR”

The Boolean "XOR" instruction is used to calculate the result of two Boolean expressions. Only when one
of the expressions is true and the other is false, the result returned by the expression is true; when the result
of both expressions is true or both are false, the result returned is false.

[Example 3.10] Create a POU and use the Boolean "XOR" instruction to determine whether the return
value is TRUE or FALSE.

The specific procedure is shown in Figure 3.12.
VAR
bResult: BOOL.
bVar1: BOOL.
iVar1: INT:=30.
END_VAR
The program runs with a TRUE result.

Figure 3.12 Boolean “XOR” operation CFC program diagram

3.1.2 Placement priority and reset priority flip-flop instructions
In the relay system, several pairs of contacts of a relay act at same time. In the PLC, the instructions are

executed one by one, and the instructions are executed in sequence. There are no instructions execution at
same time.

Therefore, the set and reset instructions of coil format have priority. the set input and reset input of SR flip
-flop and RS flip-flop are in the same instruction, and the set and reset input is executed after whoever is
below the instruction input.

The SR flip-flop is a "set priority" flip-flop, when the set signal (SET1) and reset signal (RESET) are 1 at
the same time. The flip-flop final state is set state; RS flip-flop is "reset priority" type flip-flop, when the set
signal (SET) and reset signal (RESET1) are 1 at the same time, the flip-flop final state is reset state. Set

18

priority SR and RS reset priority flip-flop instruction parameters are shown in Table 3-6, and the instruction
table is shown in 3-7.

Function Name FB ST Description

SR and RS reset first
Priority Triggers

SR Set Priority Trigger

RS Reset Priority Trigger

Table 3-6 Set Priority SR and RS Reset Priority Trigger Instructions
Name Definition Type data Description

SET1 Input Parameters BOOL Set priority command
SET Input Parameters BOOL Set command
RESET1 Input Parameters BOOL Reset priority command
RESET Input Parameters BOOL Reset command
QT1 Input Parameters BOOL Output

Table 3-7 Reset Priority SR and RS Reset Trigger Instruction Parameters

3.1.2.1 Set Priority Flip-flop SR

Function: Set bistable flip-flop, set priority. Logic relationship: Q1=(NOTRESETANDQ1)ORSET1 where
SET1 is the set signal and RESET is the reset signal.

Syntax: When SET1 is "1", regardless of whether RESET is "1", Q1 output is "1"; when SET1 is "0 ", if Q1
output is "1", once RESET is "1", Q1 output will be reset to "0" immediately. If Q1 output is "0", no matter
RESET is "1" or "0", Q1 output will remain as "0 ". The timing diagram is shown in Figure 3.13 (a), and the
corresponding state table is shown in Figure 3.13 (b).

Figure 3.13a) Timing diagram of SR set priority flip-flop
SET1 RESET Q1 Output

0 0 Keep the original state
1 0 1
0 1 0
1 1 1

Figure 3.13b) SR Set Priority Flip-flop Status Table
Example 3.11] A system needs a stop signal and requires the system to be shut down immediately after a

fault occurs. The output signal to control the equipment shutdown is bStopMachine. Otherwise, it can operate
normally.

Variable Name Description
bRun System operation
bError System failure
bStopMachine Shutdown command

Table 3-8 Variable assignment table

19

Figure 3.14 Example of SR reset priority flip-flop program

The device's run signal is bRun, and bError will be set to "1" when any fault occurs in the system. The
specific variable assignment table is shown in Table 3-8. The program as shown in Figure 3.14. Since bError
has a higher priority than bRun, bError needs to correspond to the set priority, and it only makes sense for
bRun to be ON when there is no fault.

3.1.2.2 Reset Priority Flip-flop RS

Function: Reset bistable flip-flop, reset priority. Logic relationship: Q1=NOTRESET1AND(Q1ORSET)
where SET is the set signal and RESET1 is the reset signal.

Syntax: When RESET1 is "1", the output of Q1 is "0" regardless of whether SET is "1" or not; when
RESET1 is "0", if Q1

Once SET is "1", the Q1 output is immediately set to "1". If the Q1 output is "1", the Q output remains "1"
regardless of whether SET is "1" or "0". ". The timing diagram is shown in Figure 3.15 (a), and the
corresponding state table is shown in Figure 3.15 (b).

Figure 3.15a) RS Reset Priority Flip-Flop Timing Diagram

SET1 RESET1 Q1 Output
0 0 Keep the original state
1 0 1
0 1 0
1 1 0

Figure 3.15b) RS reset priority flip-flop status table
[Example 3.12] To control the motor forward and reverse, the direction of rotation is switched by buttons

S1 and S2. When the direction is confirmed, press the HALT button and the motor starts to run, please use
the RS reset priority flip-flop to implement this function. The state of the direction selection button
corresponding to the program is S1 for the clockwise running direction of the motor and S2 for the
counterclockwise direction. The program statement and the implementation procedure are shown below.

PROGRAM PLC_PRG
VAR_INPUT

S1 AT %IX0.1: BOOL;//motor clockwise button
S2 AT %IX0.2: BOOL;//motor counterclockwise button
HALT AT %IX0.0: BOOL;//motor Halt button

END_VAR
VAR

RS_1,RS_2: RS;//reset priority flip-flop
END_VAR
VAR_OUTPUT
K1 AT%QX0.0:BOOL;//execute clockwise
K2 AT%QX0.1:BOOL;//Run counterclockwise

END_VAR

20

Figure 3.16 RS reset priority for forward and reverse motor control
When the direction S1 is selected, after pressing the HALT button, the K1 contactor is operated, and vice

versa, after the S2 button, the HALT button is pressed and the K2 contactor is operated, thus making the
motor run clockwise, the program is shown in Figure 3.16.

In practical applications, for the safety of equipment and personnel, it is often necessary to achieve
interlocking functions, such as the direction of rotation control buttons S1 and S2 need to achieve the same
time only one of the two can be ON, if the two are ON at the same time, it is necessary to stop immediately.
To achieve the above function, the corresponding program needs to be modified, and its program variable
declaration is consistent with Example 3-12, and the specific implementation procedure is shown in Figure
3.17.

Figure 3.17 RS reset priority motor forward and reverse control with interlock function
The above procedure effectively realizes the interlocking of the program, and once S1 and S2 are ON at

the same time, the output will be stopped immediately to protect equipment and operator.

3.1.3 Edge detection command
The edge detection instruction is used to detect the change in the rising edge (signal from 0 ---->1) and

falling edge (signal from 1 ---->0) of the BOOL signal, as shown in Figure 3.18. The signal state is compared
with its state in the previous scan cycle in each scan cycle, and if it is different, it indicates a jump edge.
Therefore, the signal state in the previous cycle must be stored so that it can be compared with the new
signal state. The edge detection command table is detailed in Table 3-9.

Rising

edge Descending edge

Function
Name

Graphical language Textualized Language Description

R_TRIG R_TRIG Rising edge
detection

21

F_TRIG F_TRIG Falling edge
detection

Table 3-9 Edge detection command

The edge detection command parameters are shown in Figure 3.18 Edge Signal, Table 3-10.
Name Definition Data Type Description

CLK Input Variables BOOL Detected signal input
Q Output Variables BOOL Trigger status output

Table 3-10 Edge detection command parameters

3.1.3.1 Rising edge detection R_TRIG

Function: Used to detect the rising edge.
Syntax: When CLK changes from "0" to "1", the rising edge detector starts to start, Q output first from "1"

and then the output becomes "0 ", which lasts for one PLC operation cycle; if CLK is kept as "1" or "0", Q
output is kept as "0". Collect the rising edge of the bInput signal, the program as shown in Figure 3.19 (a), the
timing diagram as shown in Figure 3.19 (b).

Figure 3.19 Rising edge trigger program a) Rising edge trigger program b) Rising edge trigger timing diagram
[Example 3.13] In industrial projects, the alarm display is often used. The rising edge trigger instruction is

used to detect the alarm signal source, and the alarm display is controlled by the set reset function, the
variable assignment table is shown in Table 3-11, and the program is shown in Figure 3.20.

Variable Name Description Variable Name Description
bAlarm1 Alarm signal source 1 bAlarm4 Alarm signal source 4
bAlarm2 Alarm signal source 2 bReset Reset button
bAlarm3 Alarm signal source 3 bTowerLightRed Alarm red display light
The program variables are declared as follows:
PROGRAMPLC_PRG
VAR
RS_0:RS.
bAlarm1,bAlarm2,bAlarm3,bAlarm4:BOOL.
R_TRIG_0:R_TRIG.
R_TRIG_1:R_TRIG.
bReset:BOOL.
bTowerLightRed:BOOL.
END_VAR

Figure 3.20 Example of alarm display reset CFC program

3.1.3.2 Falling edge detection F_TRIG

Function: Used to detect the falling edge.
Syntax: When CLK changes from "1" to "0", the falling edge detector starts, Q output first from "1" and

then the output becomes "0 ", which lasts for one PLC operation cycle; if CLK is kept as "1" or "0", Q output is

Cycle

period

Cycle

period

22

kept as "0".
[Example 3.14] The falling edge of bInput signal is captured, and when bInput changes from True to

False, the function block F_TRIG.Q will give the corresponding output according to the falling edge trigger
event, and the output time is maintained in one cycle. The program is shown in Figure 3.21

Cycle

period

Cycle

period

a

)
b

)
Figure 3.21 Rising edge trigger program

a) Falling edge triggering procedure b) Falling edge triggering timing diagram

3.2 Timer Instructions

3.2.1Timer
The timer adopts IEC61131-3 standard timer, which is divided into pulse timer TP, power-on delay timer

TON, power-off delay timer TOF and real-time clock RTC. graphical and textual instruction table of all timer
instructions is shown in Table 3-12, and timer instruction parameter table is detailed in 3-13.

Timer commands Graphical language Textualized
Language

Description

Timer TP Pulse Timer

TON Power-on delay
timer

Timer commands Graphical language Textualized
Language

Description

TOF Power failure
delay timer

RTC Real Time
Clock

Table 3-12 Graphical and text-based instruction table for timer instructions
Variable Name Description Variable Name Description

IN Input Variables BOOL Start input
PT Input Variables TIME Delay time
Q Output Variables BOOL Timer output
ET Output Variables TIME Current Timing Time

Table 3-13 Timer instruction parameters
The timer timing diagram is shown in detail in Figure 3.22.

23

Figure 3.22 Timer characteristics timing diagram

3.2.1.1 Pulse Timer TP

Function: Pulse timing.
Syntax: When the input IN of the timer changes from "0" to "1", the timer is started. of the output signal is

"1". The output ET provides the timing time for the output Q. The timing starts from T#0s and ends at the set
PT time. When the PT time is reached, ET will keep the timing time until IN becomes "0". If the input IN has
become "0" before the PT timing time is reached, enter ET to program T#0s, the PT timing moment. To reset
the timer, simply set PT=T#0s.

[Example 3.15] Use the pulse timer TP to make a blinking program with an “ON” keep time of 1s and an
“OFF” keep time of five seconds. Two TP timers are used in the program, and the input to control the timer
ON to keep 1s is taken as inverse by the output signal of the OFF timer as control. Variable assignment table
is shown in Table 3-14, and the program is shown in Figure 3.23

Variable Name Description
bTowerLightGreen Indicator light output

Table 3-14 Variable assignment table

Figure 3.23TP timer program

3.2.1.2 Power-on delay timer TON

Function: Power-on delay timer. When the input IN of the timer changes from "0" to "1", the timer will start,
and when the timing time PT is reached and the signal IN of the input is always maintained at "1", the output
signal is “1”. If the input IN signal changes from "1" to "0" before the timer reaches the timer time, the timer
will be reset, and the next timer is restarted on the rising edge of IN signal.

The output ET provides a timing time that starts at T#0s and ends at the set PT time, when the PT is
reached, ET will hold the timing time until IN becomes "0". If the input IN becomes "0" before the PT timing
time is reached, the output ET immediately becomes T#0s. To restart the timer, you can set PT=T#0s or set
IN=FALSE.

[Example 3.16] Two motors M1 and M2 are required to start M1 when the start button DI_bStart is
pressed, and M2 starts 20 seconds later; when it is necessary to stop, press the stop button DI_bStop, and
M2 stops, and M1 stops 10 seconds later. Each motor has overload protection, and when either motor is
overloaded, both motors stop at the same time. Variable assignment table is shown in Table 3-15.

When the start button DI_bStart is pressed, it immediately sets DO_KM_M1 to "1" and triggers the M2
motor start delay through the self-locking signal, and after reaching 20s, the timer M2_StartDelay. Q is set to
"1", and M2 is started by this signal.

24

Motor. When it needs to stop, press the stop button DI_bStop, set the intermediate variable bStopTemp
to "1", and stop the M2 motor immediately, and start the M1 motor stop delay timer M1_StopDelay through
this intermediate variable, and M1 will stop after reaching the set time of 10s. The program is shown in Figure
3.23

DI_bStop Stop Button
DI_bFuse1 M1 overload protection
DI_bFuse2 M2 overload protection
DO_KM_M1 Start M1
DO_KM_M2 Start M2

Table 3-15 Variable assignment table

Figure 3.23 Example of motor delay start procedure

3.2.1.3 Power-off delay timer TOF

Function: Power-off delay timing. When the input IN of the timer changes from "0" to "1", the Q output
signal of the timer is "1", and the start input of the timer changes to When the timer input becomes "0", the
timer starts. If the timer is running, its output Q is always "1", and when the timer time is reached, the output Q
is reset, and before the timer time is reached, if the timer input returns to "1", then the timer is reset and the
output Q output signal at the output is kept as "1". You can refer to the TOF related timing diagram in Figure
6.x.

The output ET provides the timing time, the delay time starts from T#0s and ends at the set timing time
PT. When the PT time is reached, ET will hold the timing time until input IN returns "1". If the input IN changes
to "1" before the PT timing time is reached, the output ET immediately changes to T#0s. To reset the timer,
you can set PT=T#0s.

[Example 3.17] In the interior light control, when the door is opened, the interior light will be on, even if
the door is closed within 10 seconds, the interior light will continue to be on, such control is used in the timer
break delay action mode. The following PLC program to achieve this function.

The timing diagram of the program is shown in Figure 3.24. The bDI_Door door lock signal is "1" when
the door is open and "0" when it is closed. The program is shown in Figure 3.25, and the variable assignment
table is shown in Table 3-16.

25

Door switch

Interior lights

Figure 3.24 Timing diagram of the car interior light control program

Figure 3.25 TOF Car Door Timer Program
Variable Name Description

bDI_Door Door lock signal
bDO_IndoorLight Interior lights

Table 3-16 Variable Assignment Table

3.2.1.4 Real Time Clock RTC

Function: Starts at the given time and returns the current date and time.
Syntax: RTC (EN, PDT, Q, CDT) means when EN is "0", the output variable Q and CDT is "0", related

time is DT#1970-01-01-00:00:00. Once EN is "1", the time given by PDT will be set and will be counted in
seconds, once EN is TRUE, CDT will be returned. Once EN is reset to FALSE, CDT will be reset to its initial
value of DT#1970-01-01-00:00:00. Please note that the PDT time is only valid on the rising edge. the RTC
timer parameter table is shown in detail in 3-17.

Variable Name Description Variable Name Description
EN Input Variables BOOL Start Enable
PDT Input Variables DATA_AND_TIME Set the time and date when it

will be started
Q Output Variables BOOL Status Output
CDT Output Variables DATA_AND_TIME Status of current count time

and date
Table 3-17 Standard Timer Instruction Parameters

[Example 3.18] Create a POU, use the RTC instruction, set the initial time for it, and when the bEnable
variable is ON, returns the current date and time. The procedure is shown in Figure 3.26.

Figure 3.26 Example of RTC instruction application

26

3.3 Counter Instructions

3.3.1 Introduction to Counters
The CodeSys standard function library provides add and subtract counting function blocks, and the

system provides three function blocks, CTU add counter, CTD subtract counter and CTUD add and subtract
counter.

3.3.2 Counter Instructions
The graphical and textual instruction table of all counter instructions that come with the standard library is

shown in Table 3-18, and the counter instruction parameter table is detailed in 3-19.
Counter command Graphical language Textualized

Language
Description

Counters

CTU Incremental
counter

CTD Decremental
Counter

CTUD Incremental /
Decremental
counter

Table 3-18 Graphical and text-based instruction table for standard counters

Variable Name Description Variable Name Description
CU Input

Variables
BOOL Detection of rising edge signal input triggers

output CV increment
CD Input

Variables
BOOL Detection of rising edge signal input trigger

output CV decrement
RESET Input

Variables
BOOL Reset counter

LOAD Input
Variables

BOOL Load counter

Q Output
Variables

BOOL Output TRUE when CV is incremented to the
count limit/0

QU Output
Variables

BOOL When CV increments to the upper count limit
PV, QU outputs TRUE

QD Output
Variables

BOOL When the output CV decreases to 0, the QD
outputs TRUE

CV Output
Variables

WORD Current count value

Table 3-19 Standard Counter Instruction Parameters

27

3.3.2.1 Incremental Counter CTU

When the signal at the counter input CU changes from state "0" to state "1", the current calculated value
is added by 1, and the current value is calculated via the output

CV is displayed, and when it is called for the first time (the reset input RESET signal status is "0"), the
count at the input PV is the default value, and when the count reaches the upper limit of 32767, the counter
will not be increased, and the CU will not work anymore.

When the signal state of reset input RESET is "1", the CV and Q of the counter are "0", and if the state of
input RESET is "1", the rising edge will no longer work for the CU will no longer work. When the CV value is
greater than or equal to PV, the output Q is "1". At this time, the CV can continue to accumulate, and the
output Q continues to be output "1".

An example of the increment counter CTU instruction is shown in Figure 3.27, and the timing diagram is
shown in 3.28.

Figure 3.27 Example of using the incremental counter CTU

Figure 3.28 Timing diagram of incremental counter CTU
Incremental function blocks. The input variable CU and reset RESET and the output variable Q are of

Boolean type, and the input variable PV and the output variable CV are of WORD type.
CV will be initialized to 0 if reset RESET is TRU really. If the CU has a rising edge from FALSE to TRUE,

the CV is raised by 1 and Q will return TRUE so that the CV will be greater than or equal to the upper limit PV.
There is a photoelectric sensor on the line, and the signal will be set to "1" when the product passes by,

as shown in Figure 3.29 (a). With the counter instruction, the program is used to calculate the total output
throughput.

Figure 3.29 Example of using the incremental counter CTU
a) Application schematic b) Program ladder diagram

See Table 3-20 for the variable assignment table. bDI_ConverySensor's sensing status corresponds to
"1" when there are products flowing through the pipeline and "0" when there are no products, so this signal
can be directly used as the CU input signal of the increment counter CTU. The current real-time value is
displayed by nCurrentValue. bDI_Reset is used as a clear signal to clear the current value.

Variable Name Description
bDI_ConverySensor Transmission with sensor signal
bDI_Reset Counter reset button
nCurrentValue Total number of current products

Table 3-20 Variable assignment table

28

3.3.2.2 Decremental Counter CTD

When the CD signal at the input of the counter is changed from "0" to "1", the current count value is
reduced by 1 and the current value is displayed on the output side of the CV, the first time it is called (the
signal LOAD at the load input needs to be initialized, it needs to be changed from The first time it is called (it
is necessary to initialize the LOAD signal at the input, which needs to be changed from "0" to state "1" and
then to state "0" before the function block can take effect), the count at the input PV is the default value, and
when the count reaches 0, the count value will not be When the count reaches 0, the count value will not
decrease and CD will no longer work.

When the load input signal LOAD is "1", the count value is set to the PV default value, and the CD rising
edge of the input does not work if the load input signal LOAD is "1". When the CV value is less than or equal
to 0, the output Q is "1". The example of subtracting counter CTD instruction is shown in Figure 3.30, and the
timing diagram is shown in 3.31.

Figure 3.30 Example of the use of the decremental counter CTD

Figure 3.31 Timing diagram of decremental counter CTD
[Example 3.19] A factory produces products every 25 can be filled with a box, after flowing through the

assembly line, each full box, you need to output a 3s delay instructions bPackingDone signal, the assembly
line is equipped with photoelectric sensors, through the bDI_ConverySensor signal feedback to the PLC. in
addition to the need to count the total number of boxes produced that day nPackageQTY.

Figure 3.32 Example of the decremental counter CTU program
The variable assignment table is shown in Table 3-21, using the bDI_ConverySensor sensor signal on

the transmission line as the CD source signal for the CTD function block, PV is given as 25, and
Counter_Down.Q outputs a high-level pulse as the BOOL signal for a full case when it is full of 25 cases. This
signal is also used as the CU source signal of the Package_Counter counter to accumulate the number of
cases. nPackageQTY is the total number of cases produced for the day. The full box indicator is output by
using TP function block to do delay. The program is shown in Figure 3.32.

Variable Name Description
bDI_ConverySensor Transmission with sensor signal
bPackingDone Full tank indicator
nPackageQTY Total number of cases produced on that day

Table 3-21 Variable assignment table

29

3.3.2.3 Incremental / decremental bidirectional counter CTUD

When the CU signal at the plus counter input changes from "0" to "1", the current count value is added by
1 and is displayed on the output CV line. When the state of the CD signal at the minus input changes from "0"
to "1", the current count value is subtracted by 1 and displayed on the output CV. If both inputs have rising
edges, the current count value will remain unchanged.

When the count value reaches the upper limit value of 32767, the rising edge of the plus count input CU
no longer works. Therefore, even if the rising edge of the plus counter input CU appears, the count value
does not increase. Similarly, when the count value reaches the lower limit value 0, the decrement input CD
will not be in its role, so the count value will not decrease even if the rising edge of the decrement input CD
appears.

When the CV value is greater than or equal to the PV value, the output QU is "1". When the CV value is
less than or equal to 0, the output QD is "1".

[Example 3.20] Create a POU, use the increment/decrement bidirectional counter CTUD, when bUp has
a rising edge signal, the count value increases, bDown has a rising edge signal, the count value decreases.
bReset is used for data reset, the specific code is as follows, the program is shown in Figure 3.33.

VAR
bUp:BOOL.
bDown:BOOL.
bReset:BOOL.
bLoad:BOOL.
CTUD_0:CTUD.
END_VAR
CTUD_0(CU:=bUp,CD:=bDown,RESET:=bReset,LOAD:=bLoad,PV:=,QU=>,QD=>,CV=>).

Figure 3.33 Example of using the CTUD increment/decrement counter
[Example 3.21] An automatic warehouse stores a certain kind of goods, up to 6000 boxes, and needs to

count the incoming and outgoing goods stored, with more than 1000 boxes of goods, the light L1 lights up; the
excess of 5000 boxes of goods, the light L2 lights up. The input signal for incoming goods is bInput, and the
corresponding input signal for outgoing goods is bOutput. see the variable assignment table in Table 3-22 for
details.

Variable Name Description
bInput Stocking
bOutput Shipment
nL1Value Number 1000
nL2Value Number 5000
L1 More than 1000 lights
L2 More than 5000 lights

30

 Using the CTUD command, when receiving
bInput is connected to the CU signal of the bidirectional counter for value accumulation, and bOutput is

connected to the CD signal of the bidirectional counter for value decrement when shipping. The current value
is represented by FB_CTUD.CV. If the current count value is greater than nL1Value, L1 is ON, and greater
than nL2Value, L2 is ON.

Figure 3.34 Example of automatic warehouse incoming and outgoing counting function

3.4 Data Processing Instructions
The data processing instructions provided in the CodeSys standard function library include selection

operation instructions, comparison instructions and shift instructions, etc. The instructions in each section are
described in detail below.

3.4.1Selecting operation commands
In the actual application often used in some data selection and screening, in the selection operation

instructions will introduce several common instructions for the reader in the future practical applications to
provide convenience, common selection operation instructions as shown in Table 3-23.

Select operation
command

Graphical language Textualized Language Description

Select operation command

SEL Two-choice-one

MAX Take the
maximum value

MIN Take the
minimum value

LIMIT Limited value

31

MUX Multiple Choice
One

Table 3-23

3.4.1.1 The two-choice SEL

Function: Select one of the two input data as output by the selector switch, and when the selector switch
is FALSE, the output is the first input data, when the selector switch is TRUE, the output is the second data.

Syntax: Its textualized language syntax format is as follows, OUT:=SEL(G,IN0,IN1) The parameter G
must be a Boolean variable. If G is FALSE, the result of the return value is IN0, if G is TRUE, the result of the
return value is IN1, and its parameter description is detailed in the table 3-24 shown.

Name Definition Data Type Description
G Input Variables BOOL Input selection bit
IN0 Input Variables Any type Input data 0
IN1 Input Variables Any type Input data 1
Return Value Output Variables Any type Output Data

Table 3-24 Two-choice SEL parameter description
[Example 3.22] Create a POU, when the input value bInput is FALSE, the output is 3, and vice versa,

when it is TRUE
The output is 4. The specific implementation procedure is as follows.
VAR
iVar1:INT:=3.
iVar2:INT:=4.
iOutVar:INT.
bInput:BOOL.
END_VAR
iOutVar:=SEL(bInput,iVar1,iVar2).

3.4.1.2 Taking the maximum value of MAX

Function: Maximum value function. Selects the maximum value among multiple input data as the output.
Syntax: The format of its textualized language syntax is shown below.
OUT:=MAX(IN0,...,INn)
The parameter descriptions are detailed in Table 3-25.

Name Definition Data Type Description
IN0 Input Variables Any type Input data 0
INn Input Variables Any type Input data n
Return
Value

Output
Variables

Any type Output Data

Table 3-25 Explanation of MAX parameters for taking the maximum value
[Example 3.23] Create a POU where the input value of iOutVar is the greater of iVar1 and iVar2, and

implement the program as follows.
VAR
iVar1:INT:=30.
iVar2:INT:=60.
iOutVar:INT.
END_VAR
iOutVar:=MAX(iVar1,iVar2).
The program runs and the output is 60.

3.4.1.3 Taking the minimum value MIN

Function: Minimum value function. Selects the minimum value as the output among multiple input data.
Syntax: The format of its textualized language syntax is shown below.

32

OUT:=MIN(IN0,...,INn)
IN0,INn and OUT can be of any data type, and their parameter descriptions are shown in Table 3-26.
Name Definition Data Type Description

IN0 Input Variables Any type Input data 0
INn Input Variables Any type Input data n
Return
Value

Output
Variables

Any type Output Data

Table 3-26 Minimum value MIN parameter description

[Example 3.24] Create a POU where the input value of iOutVar is the smaller of iVar1 and iVar2, and
implement the program as follows.

VAR
iVar1:INT:=30.
iVar2:INT:=60.
iOutVar:INT.
END_VAR
iOutVar:=MIN(iVar1,iVar2).
The program runs and the output is 30.

3.4.1.4 Limiting value LIMIT

Function: Limit value output. Determines whether the input data is between the minimum and maximum
values, and if the input data is between them, the input data is output as the output data. If the input data is
greater than the maximum value, the maximum value is used as the output value. If the input data is less than
the minimum value, the minimum value is used as the output value.

syntax: its textualized language syntax format is as follows.
OUT:=LIMIT(Min,IN,Max)
IN,Min,Max and the return value can be of any data type, and their parameter descriptions are detailed in

Table 3-27.
Name Definition Data Type Description

Min Input Variables Any type Input data 0
IN Input Variables Any type Input data n
Max Input Variables Any type Input data n
Return Value Output Variables Any type Output Data

Table 3-27 Parameter Description
Example 5.25] Create a POU and use the limit value instruction to ensure that the output value is in the

range of 30 to 80, regardless of the input value. The specific implementation procedure is as follows.
VAR
iVar:INT:=90.
iOutVar:INT.
END_VAR
iOutVar:=limit(30,iVar,80).
The minimum input value is 30 and the maximum input value is 80. The actual input value is 90, which is

greater than the maximum value, so the final output takes the maximum value of 80 as the output, so the
result is 80.

3.4.1.5 Multiple Choice MUX

Function: Multiplexer operation. Selects one of multiple input data as output by control number.
syntax: its textualized language syntax format is as follows.
OUT:=MUX(K,IN0,... ,INn)
IN0,... ,INn and the return value can be any variable type. However, K must be BYTE, WORD, DWORD,

LWORD, SINT, USINT, INT, UINT, DINT, LINT, ULINT, or UDINT, and MUX selects the Kth data output from
the variable group. The parameter descriptions are shown in Table 3-28.

Name Definition Data Type Description
K Input Variables Integer type Control number
IN0 Input Variables Any type Input data 0

33

INn Input Variables Any type Input data n
Return
Value

Output
Variables

Any type Output Data

Table 3-28 Parameter Description
[Example 3.26] Create a POU and use the multi-select instruction to select the final data to be output

according to the input control number iVar.
The specific implementation procedure is as follows.
VAR
iVar:INT:=1.
iOutVar:INT.
END_VAR
iOutVar:=MUX(iVar,30,40,50,60,70,80).
The final output result is 40, because the data sorting is accumulated from the 0th element. If the data is

out of range, the most data is output by the last data, such as in example 6.x, the value of iVar is set to 10, the
final output is 80. If iVar is -1, the final output is still 80.

3.4.2Comparison Instructions
The compare instruction is used to compare two signed or unsigned numbers of the same data type, IN1

and IN2, to determine the operation. The operations involved are: =, > =, < =, >, <, < > In graphical languages,
the comparison instruction is programmed as a moving contact, with the comparison parameter and the
comparison operator in the middle of the moving contact. When the result of the comparison is true, the
moving contact closed; in the text-based language, the comparison instruction can be directly expressed in
symbols, when the comparison result is true, the PLC will set the result of the operation to True. comparison
instructions graphical and text-based instructions are shown in Table 3-29.

Compare
commands

Graphical language Textualized
Language

Description

Compare commands

= Equivalent

<> No equivalent

> Greater

>= Greater or equal

< Less

<= Less or equal

Table 3-29 Table of graphical and textual instructions for comparison instructions

34

3.4.2.1 Greater

Function: the Boolean operator returns TRUE when the first operand is greater than the second operand.
The variable types are BOOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL, LREAL,
TIME, DATE, TIME_OF_DAY, DATE_ AND_TIME and STRING.

Syntax: Its textualized language syntax format is as bResult:=bVar1>bVar2.
[Example 3.27] As the INT type variable his value valid range is -32768 to 32767, the type exists positive

and negative, in the actual application often need to determine its sign. If the value is negative, the highest bit
of the variable is 1. For example, 32766 can be used as the defining line, once the current value is greater
than 32766, both the current value can be judged as negative, to carry out the next action. The declaration
part of this judgment procedure is shown below, and the specific procedure is shown in Figure 3.35.

PROGRAMPLC_PRG
VAR_INPUT
nValue:INT;//input value
END_VAR
VAR_OUTPUT
bOverFlowAT%QX0.0:BOOL;//Sign bit overflow
END_VAR

When the value of nValue is greater than or equal to 32766, bOverFlow will be set to TRUE.

Figure 3.35 Example of a CFC program application larger than the function

3.4.2.2 Greater or equal

Function: when the first operand is greater than or equal to the second operand, the Boolean operator
returns TRUE.

The variable types are BOOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL,
LREAL, TIME, DATE, TIME_OF_DAY, DATE_AND_TIME and STRING.

Syntax: Its textualized language syntax format is bResult:=bVar1>=bVar2.

[Example 3.28] Since the UINT type variable he valid range of values is 0 to 65535, if the value is greater
than this range, there will be an overflow. To prevent this phenomenon, an overflow warning can be made in
the program, when the value is greater than or equal to 65530, that is, a warning message is given to remind
to clear the data to zero. The declaration part of this judgment program is shown below, and the specific
program is shown in Figure 3.36.

PROGRAMPLC_PRG
VAR_INPUT
nValue:UINT;//input value
END_VAR
VAR_OUTPUT
bOverFlowAT%QX0.0:BOOL;//overflow warning
END_VAR
When the value of nValue is greater than or equal to 32766, bOverFlow will be set to TRUE.

Figure 3.36 Example of a CFC program application with a greater than or equal to function

35

3.4.2.3 Equivalent

Function: the Boolean operator returns TRUE when the first operand is equal to the second operand, and
the operand types are BOOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL, LREAL,
TIME, DATE, TIME_OF_DAY, DATE_ AND_TIME and STRING.

Syntax: The format of its textualized language syntax is bResult:=bVar1=bVar2.
[Example 3.29] Judgment of S1 button and S2 button, if the two buttons are in the same state, then K1

output is ON, and vice versa is FALSE. the declaration part of this judgment program is shown below, and the
specific program is shown in Figure 3.37.

PROGRAMPLC_PRG
VAR_INPUT
S1AT%IX0.0:BOOL;//Input button 1
S2AT%IX0.1:BOOL;//Input button 2
END_VAR
VAR_OUTPUT
K1AT%QX0.0:BOOL;//output indicator
END_VAR

Buttons S1 and S2 are two input buttons, and when both are ON or OFF at the same time, K1 has an
output ON signal.

Figure 3.37 Example of a CFC program application equal to a function

3.4.2.4 Less

Function: when the first operand is smaller than the second operand, the Boolean operator returns TRUE.
The operand types are BOOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL,
LREAL, TIME, DATE, TIME_OF_DAY, DATE_ AND_TIME and STRING.

syntax: its textualized language syntax format is bResult:=bVar1<bVar2.

[Example 3.30] If K1 has an output when the input value nVar1 is smaller than the input value nVar2, then
K1 has an output. The declaration part of this judgment program is shown below, and the specific program is
shown in Figure 3.38.

PROGRAMPLC_PRG
VAR_INPUT
nVar1:WORD;//Input value 1
nVar2:WORD;//Input value 2
END_VAR
VAR_OUTPUT
K1AT%QX0.0:BOOL;//output indication
END_VAR

Figure 3.38 Less than function CFC program application example

36

3.4.2.5 Less or equal

Function: the Boolean operator returns TRUE when the first operand is less than or equal to the second
operand. The operand types are BOOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT,
REAL, LREAL, TIME, DATE, TIME_OF_DAY, and STRING. DATE_AND_TIME and STRING.

Syntax: Its textualized language syntax format is as follows, bResult:=bVar1<=bVar2.
【Example 3.31】byVar1 is a WORD type variable, such as when its actual value exceeds 255, the

program outputs a warning K1, the declaration part of this judgment program is shown below, the specific
program is shown in Figure 3.39.

PROGRAMPLC_PRG
VAR_INPUT
byVar1:WORD;//Input value 1
END_VAR
VAR_OUTPUT
K1AT%QX0.0:BOOL;//output indication
END_VAR

Figure 3.39 Less than or equal to function CFC program application examples

3.4.2.6 Not equal

Function: the Boolean operator returns TRUE when the first operand is not equal to the second operand.
The operand types are BOOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL,
LREAL, TIME, DATE, TIME_OF_DAY, DATE _AND_TIME and STRING.

Syntax: Its textualized language syntax format is as follows, bResult:=bVar1<>bVar2.
[Example 3.32] tTime is an event type variable, compare it with the fixed value of 1 hour, 20 minutes and

10 seconds, if the current value tTime is not equal to the fixed time, the program outputs the run signal K1,
the declaration part of this judgment program is shown below, the specific program is shown in Figure 3.40.

PROGRAMPLC_PRG
VAR_INPUT
tTime:TIME;//Input time value 1
END_VAR
VAR_OUTPUT
K1AT%QX0.0:BOOL;//output indication
END_VAR

Figure 3.40 Example of a CFC program application that is not equal to a function

Example 3.33] A wind turbine needs to monitor the generator temperature in real time. The program is
required to issue a generator overheat warning when the generator temperature is greater than or equal to 90
degrees Celsius and the time is maintained for more than 1min; and a generator under temperature warning
when the temperature is less than or equal to 60 degrees Celsius and the time is maintained for more than
1min. The variable assignment table is shown in Table 3-30.

Variable Name Description

37

AI_rGenTemperaturer Generator temperature
bTempHighAlarm High temperature alarm
bTempHighAlarm Low temperature alarm

Table 3-30 Variable assignment table

The program compares the input temperature AI_rGenTemperature by means of the GE and LE
instructions. The output result is assigned directly to the input IN of the timer. the program is shown in Figure
3.41

Figure 3.41 Example of generator temperature alarm program

3.4.3 Shift instruction
Shift operation instructions are frequently used instructions in CodeSys, which are divided into two

categories: bitwise shift instructions and circular shift instructions. Its function is to shift all bits of the operand
by 1 bit n times in the manner specified by the operation instruction and send the result to the return value.
The graphical and textual instruction table of the shift instruction table is detailed in Table 3-31.

Shift command Graphical language Textualized Language Description

Shift command

SHL Shift left by
position

SHR Shift right by
position

ROL Cyclic left shift

ROR Circular right shift

Table 3-31 Table of graphical and text-based instructions for shift instructions

38

3.4.3.1 Shift Left by Bit SHL

Function: Shift the operand left by bit, the left shift out bit is not processed, the right empty bit is
automatically filled with 0.

Syntax: The instruction can shift the data in the input IN by n bits left, and the output result is assigned to
OUT. shifting a binary number by one bit left is equivalent to multiplying the original number by 2. BYTE, Word
and DWORD values will be filled to zero if n is greater than the data type width. The format of the textualized
language syntax is shown below.

OUT:=SHL(IN,n)
Example 3.34] utilizes the shift-by-bit left instruction to shift the current value of the WORD type input

variable wWord1 by 4 bits.

Figure 3.42 Example of a bitwise left shift program
wWord1 is 0001 in hexadecimal, and after shifting 4 bits to the left by bit, the final output is 16#0010. The

process is shown in Figure 3.43. The empty bits in the lower 4 bits are filled with zeros.

Blank filling

0
Figure 3.43 Bit-by-bit left shift 4-bit process

The total number of bits in the shift operation is affected by the data type of the input variable. If the input
variable is a constant, the data type with the smallest length will be taken. The output variable's data type has
no effect on the arithmetic operation, as the following example identifies.

[Example 3.35] Compare the following bitwise left-shift operations on hexadecimal numbers. Although the
values of the input variables in byte and word form are equal, erg_byte and erg_word will give different results
depending on the data type of the input variable (BYTE or WORD).

VAR
in_byte:BYTE:=16#45.
in_word:WORD:=16#45.
erg_byte:BYTE.
erg_word:WORD.
n:BYTE:=2.
END_VAR
erg_byte:=SHL(in_byte,n);(*result is 16#14*)
erg_word:=SHL(in_word;n);(*results in 16#0114*)

When bits b6 and b7 of the BYTE type variable overflow after a two-bit left shift, the final data is 14 in
hexadecimal. and when bits b6 and b7 of the WORD type variable overflow after a two-bit left shift into bits b8
and b9 of the high byte, the bits will remain reserved, and the final result is 114 in hexadecimal. the process is
shown in Figure 3.44.

39

Blank filling 0

Figure 3.44 Comparison of BYTE and WORD Variables by Bit Left Shift

3.4.3.2 Shift Right by Bit SHR

Function: Shift the operand to the right by bit, the right shifts out bit is not processed, and the left empty
bit is automatically filled with 0.

Syntax: The instruction can shift the data in the input IN by n bits to the right, the output result is assigned
to OUT, the binary number is shifted one bit to the right equivalent dividing the original number by 2.

If n is greater than the data type width, BYTE, Word and DWORD values will be filled with zero. If a
signed data type is used, the arithmetic shift will complement the number by the highest digit.

The format of its textualized language syntax is shown below:
OUT:=SHR(IN,n)

【Example 3.36】Use bitwise right shift instruction to complete the WORD type input variable wWord1
current value right shift 5 bits, the output result assigned to wWord2, the program as shown in 4.45

Figure 3.45 Example of a bitwise right shift procedure

Blank filling 0

Figure 3.46 The process of shifting 5 bits by bit to the right

As above, wWord1 is 0100 in hexadecimal, and after shifting 5 bits to the right, the final output is
16#0008. Since WORD type variables belong to unsigned data type, valid values range from 0 to 65535, so
after shifting 5 bits to the right, there is no sign bit, and the higher 5 bits are complemented by 0. The shifting
process is shown in Figure 3.46.

[Example 3.36] is a right shift of unsigned data. If signed integer data is encountered, the higher right shift

40

needs to be complemented by a sign bit. The following example 4.37 is shown.
[Example 3.37] Use the shift right instruction to shift the current value of the INT type input variable iINT1

by 4 bits and assign the output to iINT2.

Figure 3.47 Example of a bitwise right shift program with sign bits

As above, because INT is signed bit data, valid values for -32768 ~ 32767, iINT1 for hexadecimal signed
data F100, the highest bit b15 for the symbol bit, after shifting 4 bits to the right, the need to fill the data,
because the source data symbol bit is 1, so the high 4 bits to fill 4 1, so the program runs the final result of 16
FF10, the specific shift process as shown in Figure 3.48 The specific shift process is shown in Figure 3.48.

signed

Space filling symbol bit

Figure 3.48 Bitwise right shift 4-bit process with sign bit

3.4.3.3 Cyclic left shift ROL

Function: The operand is cyclically shifted left by bit, and the bit shifted out on the left is directly added to
the lowest bit on the right.

Syntax: Allowed data types: BYTE, WORD, DWORD. Use this instruction to shift the entire contents of
input IN cyclically left bit by bit, and the empty bit is filled with the signal state of the shifted bit. The input
parameter n provides the value indicating the number of bits to be cyclically shifted, and OUT is the result of
the cyclic shift operation. Its textualized language syntax format is shown below.

OUT:=ROL(IN,n)
Example 3.38] Create a POU and try to compare the difference between bitwise left shift and circular left

shift. Move the hexadecimal WORD-type variable wWord1 by the same number of bits using two different left
shift methods and try to compare the results.

Figure 3.49 Example of a bitwise left shift cyclic left shift comparison program

41

Through Example 3.38 it is easy to see that the use of circular right shift after the output wWord3 b0 ~ b3
bits is not to fill the empty bit 0, but the input data wWord1 in b12 ~ b15 in 1010 to b0 ~ b3 bits, the detailed
process is shown in 3.50 illustration.

Figure 3.50 Example of cyclic left shift 4-bit program
The total number of bits in a circular shift instruction is also affected by the data type of the input variable.

If the input variable is a constant, the data type with the smallest length will be taken. The data type of the
output variable has no effect on the arithmetic operation, as can be seen in the following example.

[Example 3.39] Compare the following operations of cyclic left shift of hexadecimal numbers. Although
the values of the input variables in the form of byte and word are equal, erg_byte and erg_word will give
different results depending on the data type of the input variable (BYTE or WORD).

VAR
in_byte:BYTE:=16#45.
in_word:WORD:=16#45.
erg_byte:BYTE.
erg_word:WORD.
n:BYTE:=2.
END_VAR
erg_byte:=ROL(in_byte,n);(*results in 16#15*)
erg_word:=ROL(in_word,n);(*results in 16#0114*)

Figure 3.51 Comparison of BYTE and WORD variables cyclic left shift
As shown in Figure 3.51, when bits b6 and b7 of the BYTE variable are shifted by 2 bits left to bits b0 and

b1 of the output data, the final data is 15 in hexadecimal, while when bits b6 and b7 of the WORD variable are
shifted by 2 bits left to bits b8 and b9 of the output data, bits b14 and b15 of the original data are shifted to
bits b0 and b1 of the output data after the left shift. Therefore, the result is 114 in hexadecimal.

3.4.3.4 Cyclic Right Shift ROR

Function: The operand is cyclically shifted to the right by bit, and the bit shifted out on the right is directly
added to the highest bit on the left.

Syntax: Allowed data types: BYTE, WORD, DWORD. use this instruction to cycle the entire contents of
the input IN shifted right bit by bit, and the empty bits are filled with the signal state of the shifted bit. The input
parameter n provides a numerical value indicating the number of bits shifted in the loop, and OUT is the result
of the loop shift operation. The textualized language syntax format is shown below.

OUT:=ROR(IN,n)
【Example 3.40】Use the loop by bit right shift instruction to complete the WORD type input variable

wWord1 current value loop right shift 5 bits, the output result assigned to wWord2, the program as shown in
4.52.

42

Figure 3.52 Example of a cyclic shift-right program

The result of the operation of the program for the hexadecimal 1008, the program will be the original
wWord1 low 5 bits b0 ~ b4 to wWord2 in b11 ~ b15, its program shift process as shown in Figure 3.53.

Figure 3.53 Cyclic shift right by 5 bits process

[Example 3.41] Using the cyclic right-shift instruction, design a 16-bit flashing program that flashes to the
right one by one at a frequency of 2s. Through the output of the power-on delay timer every 2 seconds to
trigger the instruction loop right shift instruction, its program as shown in Figure 3.54.

Figure 3.54 Cyclic right shift flashing light program

3.5 Computing Instructions
A computing instruction performs an operation on an operand and produces the result of the operation. A

computing instruction is a special symbol that deals with data operations, and the combination of data
variables with an operation instruction forms a complete program operation statement. This section provides a
detailed description of the commonly used operation instructions in CodeSys, including assignment
instructions, arithmetic operations, mathematical operations, and address operations.

3.5.1 Assignment Instructions
The assignment instruction is the most used instruction in CodeSys. In practice, he implements the

function of transferring data from one variable to another variable.

3.5.1.1 Assignment instruction MOVE

Function: Assign the value of a constant or variable to another variable, and is the most common
command in CodeSys, assignment means

The graphical and textual command tables of the order form are detailed in Table 3-32.

Shift command Graphical language Textualized Language Description
Shift command := Assignment

Table 3-32 Table of graphical and text-based instructions for assignment instructions

43

Figure 3.55 Example of MOVE instruction program
Example 3.42] Create a POU to assign the data in the WORD variable nVar1 to nVar2, and implement

the program as follows. If you use the textualization instruction, the code in Example 3.42 is: nVar2:=nVar1.

3.5.2Arithmetic operations instructions
The +, -, *, /, and MOD instructions are all arithmetic instructions for adding, subtracting, multiplying,

dividing, and modulo.
These arithmetic operations instructions are explained in detail below. Details of their instructions are

shown in Table 3-33.
Arithmetic operations

instructions
Graphical language Textualized Language Description

Arithmetic operations
instructions

+ add up

- minus

* multiply

/ integer division

MOD modulus

Table 3-33 Table of graphical and text-based instructions for arithmetic operations

3.5.2.1 Additive operations ADD

Function: Addition instruction, two (or more) variables or constants are added together. Time variables
can also be added, and the result is another a time variable.

Syntax: The instruction can do the addition operation from the value of input variable IN0 to the value of
INn and assign the result to OUT.

Addition operation support the following variable types: BYTE, WORD, DWORD, SINT, USINT, INT, UINT,
DINT, UDINT, (L)REAL, TIME, and constant. Its textualized language syntax format is shown below.

OUT:=IN0+...+INn
[Example 3.43] Create a POU, declare two integer variables iVar1 and iVar2, and assign iVar1 to 2014,

44

and then make the value of iVar2 the value of iVar1 and iVar1 after adding them together, as follows.
VAR
iVar1:INT: = 2014.
iVar2:INT.
END_VAR

iVar2:=iVar1+iVar1.
The result of running the program is iVar2 equals 4028.
Example 3.44] In practical engineering, it is often necessary to record the number of operations. Using

the ST programming language, when the number accumulates to 10, the accumulation variable is cleared to
zero. The following is the program implementation in ST language. The rising edge triggers the function block
to accumulate the added number iCounter.

VAR
bCalStart:BOOL.
FB_StartTrigR_TRIG:R_TRIG.
iCounter:word.
END_VAR

FB_StartTrigR_TRIG(CLK:=bCalStart).
IFFB_StartTrigR_TRIG.QTHEN
iCounter:=iCounter+1.
END_IF
IFiCounter=10THEN
iCounter:=0.
END_IF

Notes: Time-type variables can also be used with the addition function, where two TIME variables are
added to get a new time. Example: t#45s+ t#50s=t#1m35s. The selected output data type should be able
to store the output result, otherwise it may cause data error.

3.5.2.2 Subtraction Operations SUB

Function: Subtraction instruction, two variables or constants are subtracted from each other.
Syntax: The instruction can subtract the value of IN1 from the input variable IN0 and assign the result to

OUT. The subtraction instruction supports the following variable types, BYTE, WORD, DWORD, SINT, USINT,
INT, UINT, DINT, UDINT, REAL, (L)REAL, TIME, and constant. The format of its textualized language syntax
is shown below.

OUT:=IN0-IN1
[Example 3.45] Create a POU, declare two floating-point variables rVar1 and rVar2, and assign them the

values 3.14 and 10 respectively.
VAR
rVar1:REAL:=3.14.
rVar2:REAL:=10.
rResult:REAL.
END_VAR
rResult:=rVar2-rVar1.
The program runs with rResult equal to 6.86.

Notes: TIME-type variables can also be used with the subtraction function, where two TIME variables are
subtracted to get a new time.

Example: t#1m35s - t#50s = t#45s, but the time result cannot have negative values.
TOD type variables can also use the subtraction function, where two TOD types are subtracted to get a

new TIME type data.
Example: TOD#45:40:30-TOD#22:30:20=T#1390m10s0ms, but the time result cannot have a negative

value.

45

3.5.2.3 Multiplication operations MUL

Function: Multiplication instruction, two (or more) variables or constants are multiplied together.
Syntax: The instruction can multiply the value of the input variable IN0 up to INn and assign its product to

OUT. the multiplication instruction supports the following variable types, BYTE, WORD, DWORD, SINT,
USINT, INT, UINT, DINT, and

UDINT, (L)REAL, TIME, TOD, and constants. The format of its textualized language syntax is shown
below.

OUT:=IN0*...*INn
[Example 3.46] Create a POU, declare two plastic variables iVar1 and iVar2, and assign them to 10 and 2

respectively, and then declare an integer variable iResult so that the result is the product of iVar1 and iVar2.
VAR
iVar1:INT:=10.
iVar2:INT:=2.
iResult:INT.
END_VAR
iResult:=iVar1*iVar2.
The program runs with the result that iResult is equal to 20.

3.5.2.4 Integer Division Operations DIV

Function: Division instruction, two variables or constants are divided by each other.
Syntax: The instruction can divide the input variable IN0 by the value of IN1 and assign the resulting

quotient value to OUT. the division operation instruction supports the following variable types, BYTE, WORD,
DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL, LREAL, and constant. Its textualized language syntax
format is shown below.

OUT:=IN0/IN1
[Example 3.47] Create a POU, declare two integer variables iVar1 and iVar2, and assign the values to 10

and 2 respectively, then declare an integer variable iResult so that its value is the value obtained by dividing
iVar1 by iVar2.

VAR
iVar1:INT:=10.
iVar2:INT:=2.
iResult:INT.
END_VAR

iResult:=iVar1/iVar2.
The program runs with the result that iResult is equal to 5.
Caution:
When using the DIV instruction in your project, you can use the CheckDivByte, CheckDivWord,

CheckDivDWord and CheckDivReal instructions to check if the divisor is zero, avoiding the divisor to be zero

3.5.2.5 Modulo Operations MOD

Function: The variable or constant is divided by the remainder, and the result is the remainder after
dividing the two numbers, which is an integer data.

Syntax: The remainder instruction MOD instruction assigns the remainder of the input variable IN0
divided by IN1 to OUT, which is usually used to create an equation with a remainder in a specific range. The
remainder instruction supports the following variable types, BYTE,

WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL, LREAL, and constants. The format of its
textualized language syntax is shown below.

OUT:=IN0 MOD IN1.
Example 3.48] Create a POU, declare two integer variables iVar1 and iVar2, and assign them to 44 and 9

respectively, and then declare an integer variable iResult, so that its value is the value of iVar1 and iVar2 after
the remainder operation.

VAR
iVar1:INT:=44.
iVar2:INT:=9.
iResult:INT.
END_VAR

46

iResult:=iVar1 MOD iVar2.
The program runs with the result that iResult is equal to 8.

3.5.3Mathematical operation commands

3.5.3.1 Basic commands

Mathematical operation instructions include trigonometric operation instructions, advanced arithmetic
instructions, and the related instruction table is shown in Table 3-34.

Mathematical operations
commands

Graphical language Textualized
Language

Description

Mathematical operations
commands

ABS Absolute value

SQR Square root

EXP Exponential

LN Natural
logarithm

LOG Logarithmic

SIN Sine

COS Cosine

ACOS Inverse cosine

ASIN Inverse sine

TAN Tangent

ATAN Inverse tangent

Table 3-34 Table of graphical and textual instructions of mathematical operation instructions
1. Absolute ABS[FUN]
Function: This function instruction is used to calculate the absolute value of a number and has no

relationship with the positive or negative sign number sign.
Syntax: The absolute value operation instruction supports the following variable types, BYTE, WORD,

DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL, LREAL and constants. Its textualized language
syntax format is shown below.

OUT:=ABS(IN).
[Example 3.49] Example of ABS function.
VAR
iVar1:INT:=-44.
iResult:INT.
END_VAR
iResult:=abs(iVar1).
The program runs with the result that iResult is equal to 44.

2. Square root SQRT[FUN]
Function: The square root of a non-negative real number.
Syntax: The input variable IN can be BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT,
UDINT, REAL, LREAL and constants, but the output must be of type REAL or LREAL. The format of its

textualized language syntax is shown below.

47

OUT:=SQRT(IN).

[Example 3.50] Example of SQRT function.
VAR
rVar1:REAL:=16.
rResult:REAL.
END_VAR

rResult:=SQRT(rVar1).
The program runs with the result that rResult is equal to 4.
3. Exponential function EXP[FUN]
Function: Returns the power of e (the base of the natural logarithm), which is a number with constant

2.71828.
Syntax: The input variable IN can be BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT,
UDINT, REAL, LREAL and constants, but the output must be of type REAL or LREAL. The format of its

textualized language syntax is shown below.
OUT:=EXP(IN).

[Example 3.51] EXP function example.
VAR
rVar1:REAL:=2.
rResult:REAL.
END_VAR
rResult:=EXP(rVar1).
The result of running the program is rResult equal to 7.389056.
4. Natural logarithm LN [FUN]
Function: Returns the natural logarithm of a number. The natural logarithm is underlain by the constant

term e(2.71828182845904).
Syntax: The input variable IN can be BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT,
UDINT, REAL, LREAL and constants, but the output must be of type REAL or LREAL. The format of its

textualized language syntax is shown below.
OUT:=LN(IN).
[Example 3.52] Example of LN function.
VAR
rVar1:REAL:=45.
rResult:REAL.
END_VAR

rResult:=LN(rVar1).
The program runs with the result that rResult is equal to 3.80666.
5. Logarithmic of a base 10 LOG[FUN]
Function: Returns the logarithm of a number with base 10.
Syntax: The input variable IN can be BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT,
UDINT, REAL, LREAL and constants, but the output must be of type REAL or LREAL. The format of its

textualized language syntax is shown below.
OUT:=LOG(IN).
[Example 3.53] Example of LOG function.
VAR
rVar1:REAL:=314.5.
rResult:REAL.
END_VAR

rResult:=LOG(rVar1).
The program runs with the result that rResult is equal to 2.49762.

6. Sine function SIN[FUN]
Function: Sine function.
Syntax: The input variable IN can be BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT,

48

UDINT, REAL, LREAL and constants, but the output must be of type REAL or LREAL. The format of its
textualized language syntax is shown below.

OUT:=SIN(IN).
【Example 3.54】SIN function example.
VAR
rVar1:REAL:=0.5.
rResult:REAL.
END_VAR
rResult:=SIN(rVar1).
The program runs with the result that rResult is equal to 0.479426.
[Example 3.55] The following program converts the sine of an angle by using the arithmetic instruction.

Before using the trigonometric instruction, convert the angle value to radian value, and then use the SIN
instruction to find the sine value. The program is shown in Figure 3.56.

Figure 3.56 Sine SIN instruction program example
7. Cosine function COS[FUN]
Function: Cosine function.
Syntax: The input variable IN can be BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT,
UDINT, REAL, LREAL and constants, but the output must be of type REAL or LREAL. The format of its

textualized language syntax is shown below.
OUT:=COS(IN).
[Example 3.56] COS function example.
VAR
rVar1:REAL:=0.5.
rResult:REAL.
END_VAR

rResult:=COS(rVar1).
The result of running the program is rResult equal to 0.877583.

8. Inverse cosine function ACOS[FUN]
Function: Cosine radian (inverse cosine function).
Syntax: The input variable IN can be BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT,
UDINT, REAL, LREAL and constants, but the output must be of type REAL or LREAL. The format of its

textualized language syntax is shown below.
OUT:=ACOS(IN).
[Example 3.57] Example of ACOS function.
VAR
rVar1:REAL:=0.5.
rResult:REAL.
END_VAR

rResult:=ACOS(rVar1).
The program runs with the result that rResult is equal to 1.0472.

9. Inverse Sine function ASIN[FUN] anyway
Function: Sine radian (inverse sine function).
Syntax: The input variable IN can be BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT,
UDINT, REAL, LREAL and constants, but the output must be of type REAL or LREAL. The format of its

textualized language syntax is shown below.
OUT:=ASIN(IN).
[Example 3.58] Example of ASIN function.
VAR
rVar1:REAL:=0.5.
rResult:REAL.

49

END_VAR

rResult:=ASIN(rVar1).
The result of running the program is rResult equal to 0.523599.

10. Tangent function TAN[FUN]
Function: The tangent function.
Syntax: The input variable IN can be BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT,
UDINT, REAL, LREAL and constants, but the output must be of type REAL or LREAL. The format of its

textualized language syntax is shown below.
OUT:=TAN(IN).
[Example 3.59] Example of TAN function.
VAR
rVar1:REAL:=0.5.
rResult:REAL.
END_VAR

rResult:=TAN(rVar1).
The program runs with the result that rResult is equal to 0.546302.

11. Inverse tangent function ATAN[FUN]
Function: The tangent radian (inverse tangent function).
Syntax: The input variable IN can be BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT,
UDINT, REAL, LREAL and constants, but the output must be of type REAL or LREAL. The format of its

textualized language syntax is shown below.
OUT:=ATAN(IN).
[Example 3.60] Example of ATAN function.
VAR
rVar1:REAL:=0.5.
rResult:REAL.
END_VAR

rResult:=ATAN(rVar1).
The program runs with the result that rResult is equal to 0.463648.

50

3.5.3.2 Expansion Instructions

 01 Math functions

section

 ATAN2 [FUN]
Azimuth from the origin to the point (x,y), the angle with the x-axis
1) Instruction

Instruction Graphical language Textualized Language
ATAN2 ATAN2(x:=,y:=).

2) Variables
Scope Name Type Comment
Return ATAN2 REAL

Input x REAL Floating point value representing the x-axis coordinates
y REAL Floating point value representing the y-axis coordinate

3) Example

 Ceil [FUN]
Rounding up
1) Instruction

Instruction Graphical language Textualized Language
Ceil Ceil(X:=).

2) Variables
Scope Name Type Comment
Return Ceil DINT
Input X LREAL

Guangzhou Auctech Automation Technology Ltd

Guangzhou Auctech Automation Technology Ltd
K_Math
1.0.0.9
Auctechcommon
K Math

K_Math,1.0.0.9(Guangzhou Auctech Technology Ltd

(Guangzhou Auctech Automation Technology Ltd)

K-Basic，1.0.0.0 (Guangzhou Auctech Automation Technology Ltd)

K-ModbusRTU，2.0.1.0 (Guangzhou Auctech Automation Technology Ltd)

K-ModbusTCP，2.0.1.0 (Guangzhou Auctech Automation Technology Ltd)

K-Recipe，1.2.1.1 (Guangzhou Auctech Automation Technology Ltd)

K-Retain，1.3.4.0 (Guangzhou Auctech Automation Technology Ltd)

K-SDO，1.0.3.0 (Guangzhou Auctech Automation Technology Ltd)

K-SignalProcess，1.0.1.1 (Guangzhou Auctech Automation Technology Ltd)

K-Utils，1.0.2.2 (Guangzhou Auctech Automation Technology Ltd)

K-BasicMotion，1.0.2.4 (Guangzhou Auctech Automation Technology Ltd)

K-CsvHelper，1.0.0.0 (Guangzhou Auctech Automation Technology Ltd)

K-File，1.0.2.2 (Guangzhou Auctech Automation Technology Ltd)

K-IniHelper，1.0.0.0 (Guangzhou Auctech Automation Technology Ltd)

K-LicenseManeger，3.0.0.8 (Guangzhou Auctech Automation Technology Ltd)

K-Math，1.0.0.9 (Guangzhou Auctech Automation Technology Ltd)

51

3) Example
 CRC16Check(FB)
Hexadecimal CRC check
1) Instruction
Instruction Graphical language Textualized Language
CRC16Check CRC16Check(EnableCheck:=,

pCheckData:=.
CrcLen:=).

2) Variables
Scope Name Type Comment

Input EnableCheck BOOL Enable the function to make the function works
pCheckData POINTTOUSINT
CrcLen UINT Crc length

Out
Busy BOOL
oCRCHi USINT High 8 bits
oCRCLo USINT Lower 8 bits

3) Example
 DegToRad(FUN)
Angle to arc
1) Instruction

Instruction Graphical language Textualized Language
DegToRad DegToRad(deg:=).

2) Variables
Scope Name Type Comment
Return DegToDad REAL
Input deg REAL Angle values in degrees
3) Example
 Floor(FUN)
Rounding down
1) Instructions

Instruction Graphical language Textualized Language
Floor Floor(x:=).

2) Variables
Scope Name Type Comment

Return Floor DINT
Input x LREAL
3) Example
 Fmod(FUN)
Floating data modulus
1) Instructions

Instruction Graphical language Textualized Language
Fmod Fmod(x:=, m:=).

2) Variables
Scope Name Type Comment

Return Floor DINT

52

Scope Name Type Comment

Input x LREAL Divisor
m LREAL Divide the number, an invalid input m=0 will return 0

3) Example

 ParamPeriodLimits(FB)
Periodic value processing, automatic modulo, negative values to positive
1) Instructions

Instruction Graphical language Textualized Language
ParamPeriodLimits ParamPeriodLimits(

rIn:=, Period:=,
Scale:=,ScaledOutput=>).

2) Variables
Scope Name Type Init Comment

Inp

rIn REAL Set value, beyond Period automatically modified
Period REAL 360 Take the number of cycles

Scale REAL 1 Convert the scale, rIn processing result value *Scale
for ScaleOutput output

Output ScaledOutput REAL
3) Example
 PeriodLimit(FUN)
Periodic value processing
1) Instructions

Instruction Graphical language Textualized Language
PeriodLimit PeriodLimit(

fIn:=, the
fMIN:=, the
fMax:=).

2) Variables
Scope Name Type Comment

Return PeriodLimit LREAL

Input
fIn LREAL Value to be processed
fMIN LREAL Cycle Minimum
fMax LREAL Periodic Maximum

3) Example
(*Example declaration*) fPeriodValue1: LREAL.
(*Example result is 5*) fPeriodValue1 := PeriodLimit(fIn:=365,fMIN:=0,fMax:=360).
(*Example declaration*) fPeriodValue1 :LREAL.
(*Example result is 90*) fPeriodValue2 := PeriodLimit(fIn:=-20,fMIN:=-10,fMax:=100).
 RadToDeg(FUN)
Radian to Angle degree
1) Instructions

Instruction Graphical language Textualized Language
RadToDeg RadToDeg(rad:=).

2) Variables
Scope Name Type Comment

53

Scope Name Type Comment
Return RadToDeg REAL
Input rad REAL Angle values in radians
3) Example
 Round(FUN)
Rounding of float numbers, with decimal places reserved
1) Instructions

Instruction Graphical language Textualized Language
Round Round(In:=, N:=).

2) Variables
Scope Name Type Comment
Return Round LREAL

Input
In REAL Values to be processed

N INT Number of decimal places to be retained, up to 8
decimal places

3) Example
Note
Supports up to 8 decimal places
(*Example declaration*) fValue:LREAL.
(*Example result is 120.305*) fValue:=Round(In:=120.305443,N:=3).

 Saturation(FUN)
Saturation function with upper and lower limits of 1, -1
1) Instructions

Instruction Graphical language Textualized Language
Saturation Saturation(value:=).

2) Variables
Scope Name Type Comment

Return Saturation REAL

Input Value REAL
3) Example
 Signum(FUN)
Positive and negative function, positive number return 1.0, negative number return -1.0, 0 return 0.
1) Instructions

Instruction Graphical language Textualized Language
Signum Signum(value:=).

2) Variables

Scope Name Type Comment

Return Signum REAL
Input Value REAL

54

3) Example
 Statistic_N_Lreal(FB)
The average of the last N times data, less than N times to take the average of all recent data, earlier than

N times data will be cleared.
1) Instructions
Instruction Graphical language Textualized Language
Statistics_
N_Lreal

Statistics_N_Lreal(Enale:=.
lrInput:=,N:=,lrMin=>,lrMax=>,lrAverage=>,xOverrun=>
).

2) Variables
Scope Name Type Comment

Input
Enable BOOL Start function block, TRUE is valid, reset when FALSE
lrInput REAL Input Value
N UINT Find the average

Output

lrMin Lreal Minimum value
lrMax Lreal Maximum value
lrAverage Lreal The return value is the average of the last N input values
xOverrun Bool Invalid input data overflow

02 Matrix
 Angel (FUN)
Find the angle of three points using the dots product principle
1) Instructions
Instruction Name Graphical representation ST Performance

Angel Find the
angle
between the
three points

Angel(o:=,a:=, b:=,
m:=).

2) Variables
Scope Name Type Comment
Return Angel Lreal

Input

o POINTERTOLREAL Origin
a POINTERTOLREAL p
b POINTERTOLREAL q
m UINT Dimension

3) Example
 Cross (FUN)
1) Instructions
Instructio

n
Name Graphical representation ST Performance

Cross Cross(a:=, b:=).

2) Variables
Scope Name Type Comment
Return Cross ARRAY[0..2]OFLREAL

55

Scope Name Type Comment

Input a ARRAY[0..2]OFLREAL
b ARRAY[0..2]OFLREAL

3) Example
 Dot (FUN)
Find the value of the vector op point multiplied by the vector oq
1) Instructions
Instruction Name Graphical representation ST Performance

Dot Find the value of
the vector op
point multiplied by
the vector oq

Dot(o:=,a:=, b:=,m:=).

2) Variables
Scope Name Type Comment

Return Dot LREAL
o POINTEROFLREAL Origin
a POINTEROFLREAL p
b POINTEROFLREAL q
m UINT Dimension

3) Example
 INV(FUN)
Inverse matrix of nth-order real matrix a by the all-choice principal Gaussian-approximation elimination

method
1) Instructions
Instruction Name Graphical representation ST Performance

INV Find the
inverse matrix

INV(a:=, n:=).

2) Variables
Scope Name Type Comment

Return INV LREAL The function returns the shaping token, 0:A
singular. Otherwise: normal

a POINTEROFLREAL Store the original matrix and its inverse matrix on
return.

n UINT p
3) Example
 InvertGaussJordan(FUN)
1) Instructions

Instruction Name Graphical representation ST Performance

InvertGaussJordan InvertGaussJordan(elem
ents:=, numColumns:=).

2) Variables

Scope Name Type Comment
Return InvertGaussJordan BOOL

Input elements POINTEROFLREAL
numColumns UINT Number of columns of the matrix

3) Example

56

 invM(FB)
1) Instructions
Instruction Name Graphical representation ST Performance

InvM InvM(numRows:=,
numColumns:=,
Elements:=.
Invelement:=).

2) Variables
Scope Name Type Comment

Input

NumRows INT
NumColumns INT
elements POINTEROFLREAL Matrix requiring inverse
numColumns POINTEROFLREAL Inverse matrix

3) Example

 MatrixAdd(FUN)
1) Instructions
Instruction Name Graphical representation ST Performance

MatrixAdd MatrixAdd(T1:=, T2:=,
m:=.
n:=, the
Tout:=).

2) Variables
Scope Name Type Comment
Return MatrixAdd INT

Input

T1 POINTERTOLREAL Matrix to the left of the minus sign
T2 POINTERTOLREAL Matrix to the right of the minus sign
m UINT Number of matrix rows
n UINT Matrix column number
Tout POINTERTOLREAL Output Matrix

3) Example
 MatrixMultiplyN(FUN)
1) Instructions
Instruction Name Graphical representation ST Performance

MatrixMult
iplyN

MatrixMultiplyN(T1:=,
T2:=,
m:=.
k:=,.
Tout:=).

2) Variables
Scope Name Type Comment
Return MatrixMultiplyN INT

Input

T1 POINTERTOLREAL Matrix to the left of the multiplication sign
T2 POINTERTOLREAL Matrix to the right of the multiplication sign
m INT Number of rows of matrix T1
n INT Matrix T1 columns, matrix T2 rows

57

Scope Name Type Comment
k INT Number of columns of matrix T2
Tout POINTERTOLREAL Output Matrix

3) Example
 MatrixSub(FUN)
1) Instructions
Instruction Name Graphical representation ST Performance

MatrixSub MatrixSub(T1:=, the
T2:=,.
m:=.
n:=, the
Tout:=).

2) Variables
Scope Name Type Comment
Return MatrixSub INT

Input

T1 POINTERTOLREAL Matrix to the left of the minus sign
T2 POINTERTOLREAL Matrix to the right of the minus sign
m UINT Number of matrix rows
n UINT Matrix column number
Tout POINTERTOLREAL Output Matrix

3) Example
 MatrixTranp(FUN)
Find the transpose of a matrix
1) Instructions
Instruction Name Graphical representation ST Performance

MatrixTranp Find the
transpose
of a matrix

MatrixTranp(T1:=, the
m:=.
n:=, the
Tout:=).

2) Variables
Scope Name Type Comment
Return MatrixSub INT

Input

T1 POINTERTOLREAL Matrix to be transposed
m INT Number of rows of input matrix
n INT Enter the number of columns of the matrix
Tout POINTERTOLREAL Output Matrix

3) Example
 Norm(FUN)
1) Instructions
Instructio

n
Name Graphical representation ST Performance

Norm Norm(v:=).

2) Variables
Scope Name Type Comment

Return Norm LREAL
Input v ARRAY[0..2]OFLREAL The array represents a vector x,y,z

58

3.5.4Address operation instructions
In practical applications, there are many cases involving memory address instructions, such as taking the

first address of an array in memory and needing to know how many bytes the array occupies in memory and
other related information, the instructions involved are listed in Table 3-35, and will be introduced in this
section one by one.

Address operation
instructions

Graphical language Textualized
Language

Description

Address operation
instructions

SIZEOF Data Type Size

ADR Address Operators

BITADR Bit Address Operators

Table 3-35 Graphical and text-based instruction table of address operation instructions
1.Data type size SIZEOF
Function: Performs this function to determine the number of bytes required for the given data type.

Simply put its function is to return the number of memory bytes occupied by an object or type.
Syntax: The return value of SIZEOF is an unsigned value, the return value of the type will be used to find

the size of the variable IN0.
The OUT output value is in bytes and IN0 can be any data type. Its textualized language syntax format is

shown below. The type of the return value is an implicit data type, and it will be determined by the actual data
value, as shown in Table 3-36.

OUT:=SIZEOF(IN0);
Return value X of SIZEOF Implicit data types

0<=sizeofx<256 USINT
256<=sizeofx<65536 UINT
65536<=sizeofx<4294967296 UDINT
4294967296<=sizeofx ULINT

Table 3-36 Return data types of SIZEOF
Example 3.61] An example of using the SIZEOF instruction to fetch the memory size occupied by an

array is shown in the following program.
Example of ST language: Example of IL language:
VAR
arr1:ARRAY[0..4]OFINT.
var1:INT.
END_VAR

var1:=SIZEOF(arr1)

.
The program assigns the result to var1, and finally var1 equals 10, because the arr1 array consists of 5

INT integer elements, and the result unit of SIZEOF is BYTE, so the final program runs as a total of 10 BYTE,
which means that arr1 occupies 10 bytes of memory.

2. Address operator ADR
Function: Obtains the memory address of an input variable and outputs it. The address can be used as a

pointer within the program or passed to a function as a pointer.
Syntax: The ADR operator whose return value is a DWORD address variable, IN0 can be of any data

type. Its textualized language syntax format is shown below.
-OUT:=ADR(IN0).
The return value of ADR is only the memory address of the variable. The length of the data that can be

stored in the memory address is 1 BYTE, and the contents of the corresponding address can be extracted by

59

the content operator "^". "The implementation procedure is shown below.
pt:=ADR(var_int1).
var_int2:=pt^.
Example 3.62] An example of using the ADR instruction to fetch an array is shown in the following

program.
Example of ST language: Example of IL language:
VAR
arr1:ARRAY[0..4]OFINT.
dwVar:DWORD.
END_VAR

dwVar:=ADR(arr1).

Example 3.63] An example of using the ADR instruction to fetch an array is shown in the following
program.

Example of ST language:
VAR
arr1:ARRAY[0..4]OFINT.
dwVar:DWORD.
END_VAR

dwVar:=ADR(arr1).
Example 3.64] An example of using the ADR instruction to fetch an array is shown in the following

program.
Example of ST language:
pt:POINTERTOINT.
var_int1:INT.
var_int2:INT.
pt:=ADR(var_int1).
var_int2:=pt^.
3. Bit address operator BITADR
Function: Returns the bit address information offset of the allocated variable.
Syntax: The BITADR operator whose return value is a DWORD address variable, IN0 can be of any data

type. Its textualized language syntax format is shown below.
OUT:=BITADR(IN0).
The return value of ADR is only the memory address of the variable. The length of the data that can be

stored in this memory address is 1 BYTE. The contents of the corresponding address can be extracted by the
content operator "^". "The implementation procedure is shown below, and BITADR returns the bit offset
address as a DWORD variable type. Note that the offset value depends on whether the option type address is
available from the target system. the DWORD maximum value defines the memory area as shown in Table 3-
37:

Address area Start Address Description
Memory 16x40000000 %M
Input 16x40000000 %I
Output 16x40000000 %Q

Table 3-37 BITADR Offset Addresses for Each Address Area
Example 3.65] Example of using the BITADR instruction to fetch bit address information.
Example of ST language: Example of IL language:
VAR
var1AT%IX2.3:BOOL.
bitoffset:DWORD.
END_VAR

bitoffset:=BITADR(var1).
The result is 80000013 in hexadecimal, the "2" in %IX2.3 is 2 Bytes, the ".3" is the 4th Bit, and the "2" is

the 4th Bit.

60

So, its address is equal to 2*8+4=20. convert 20 in decimal to 14 in hexadecimal. and because it
corresponds to the first place of the I area

The address is stored from 80000000, so it is not difficult to understand that the actual address of 14 in
hexadecimal is 16#80000013.

The schematic diagram is shown in Figure 3.57. Figure 3.57 Schematic diagram of BITADR
Offset Data Content

Figure 3.57 Schematic diagram of BITADR

3.6 Data Conversion Instructions

3.6.1Data type conversion instructions
Syntax: <TYPE1>_TO_<TYPE2>
Implicit conversion of "larger" data types to "smaller" data types is strictly prohibited, as information may

be lost when converting from a larger to a smaller data type.
If the value being converted is outside the storage range of the target data type, the high byte of this

number will be ignored. Example: Converting INT type to BYTE type or converting DINT type to WORD type.
In the conversion of <TYPE>_TO_STRING, the string is generated from the left side. If the length of the

defined string is less than the length of <TYPE>, the right part will be truncated.
1) BCD code and integer data interconversion
BCD (BinaryCodedDecimal...BCD) is a 4-bit binary number to represent the value of each digit of a

decimal number in parallel. For example, the BCD data 000000000101010111 (343) is used to represent the
decimal number "157" in the BIN data as shown in Figure 3.58.

BIN data (decimal)

Disassemble each digit

Convert the numerical values of

each bit into binary numbers

Connect the numerical values

of each bit

BCD data

Figure 3.58 BCD example illustration
When the BCD data is stored in 16-bit memory, it can handle values from 0 to 9999 (the maximum value

of 4 bits). The weights of the individual bits are shown in Figure 3.59 below.

61

1 bit
Position of each bit

Binary number

Weights of each numerical value when represented

by a decimal number

Weights of each bit value

Figure 3.59 Weighting of each value of BCD in decimal

CodeSys uses BCD code and integer interconversion instructions detailed in Table 3-38. Before using
this conversion function, you need to add util.library.

Conversion
Instructions

Graphical language Textualized
Language

Description

BCD Code
with the whole
Number of
Mutual
Conversion
Instruction

BCD_TO_BYTE BCD to
BYTE

BCD_TO_DWORD BCD to
DWORD

BCD_TO_INT BCD to INT

BCD_TO_WORD BCD to
WORD

BYTE_TO_BCD BYTE to
BCD

DWORD_TO_BCD DWORD to
BCD

INT_TO_BCD INT to BCD

WORD_TO_BCD WORD to
BCD

Table 3-38 BCD code and integer interconversion instructions
[Example 3.66] Using ST programming language, convert BCD code 73 to integer data.
i:=BCD_TO_INT(73).

4 digits

3 digits

2 digits

62

Figure 3.60 Example of BCD to INT application
As shown in Figure 3.60 above, the conversion is performed using the BCD_TO_INT instruction, and

since the result of converting 73 to binary is 01001001, the result of converting it to BCD is 49.
[Example 3.67] Using ST programming language, convert integer data 73 to BCD code.
i:=INT_TO_BCD(73).

Figure 3.61 Example of INT to BCD application
As shown in Figure 3.61 above, the INT_TO_BCD instruction is used to perform the conversion. The

result of the program after converting 73 in decimal to BCD code is 01110011, so the final BCD code decimal
representation results in 115.

【Example 3.68】 Industrial control often encounters data setting and data display, when it is usually
necessary to achieve through BCD code and integer data conversion. As shown in Figure 3.62, the user
enters the data 1942 using the numeric input button, and the number needs to be added within the program to
calculate, add 752, and display the result in the 7-segment code data display window.

Figure 3.62 Input signal and output display
a) Input signal of the digital input switch b) Output signal of the 7-segment display (digital display)
The program is shown in Figure 3.63, the valid area is the segment program in red box, the ladder

diagram sentence 1 and sentence 3 for easy understanding, the actual application does not want this
conversion instruction.

When the user keys in 1942 by dialing the code, the actual BCD data received in the program is 6466, so
it is necessary to set the

6466 converts to actual integer data for logical operations. Since the output of BCD_TO_INT is a BYTE
type variable, the data will be overflowed if 6466 is used for conversion, so here it is necessary to use the
WORD type output instruction BCD_TO_WORD to restore its BCD data to integer data. After the conversion
can be carried out in the program of normal logic operations, here the addition operation, restore the valid
data, through the operation of the results of the conversion to 7-segment display can recognize the final
output of BCD data.

Figure 3.63 Example of input signal and output display program
2) BOOL_TO_<TYPE> Boolean type conversion data
Function: Converts a Boolean data type to other data types.

63

Supported data types: BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL, TIME,
DATE, TOD, DT, and STRING.

a. When the output is of numeric type: If the input is TRUE, the output is 1. If the input is FALSE, the
output is 0.

b. When the output is a string type: If the input is TRUE, the string 'TRUE' is output. If the input is
FALSE, then

The output is the string 'FALSE'.
[Example 3.69] BOOL_TO_<TYPE> example is shown in Table 3-39 below.
Conversio

n
Instruction

s

Graphical language Textualized Language Results

BOOL_TO

i:=BOOL_TO_INT(TRU
E)

1

str:=BOOL_TO_STRIN
G (TRUE)

'TRUE'

t:=BOOL_TO_IIME
(TRUE)

T#1ms

tof:=BOOL_TO_TOD
(TRUE)

TOD#00:00:00.00
1

dat:=BOOL_TO_DATE(
FALSE)

D#1970

dandt:=BOOL_TO_DT
(TRUE)

DT#1970-01-01-
00:00:01

3) BYTE_TO_<TYPE> Byte type conversion data
Function: Convert byte type to other data type.
Supported data types: BOOL, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT,
REAL, TIME, DATE, TOD, DT, and STRING.
a.When the output is BOOL: TRUE if the input is not equal to 0. FALSE if the input is equal to 0.
b.When the output is TIME or TOD: the input will be converted in millisecond values.
c. When the output is DATE or DT: the input will be converted in seconds value.

[Example 3.70] BYTE_TO_<TYPE> example is shown in Table 3-40 below.

Conversion
Instructions

Graphical language Textualized Language Results

BYTE_TO

bVarbool:=BYTE_TO_
BOOL(255).

TRUE

iVarint:=BYTE_TO_IN
T (255).

255

tVartime:=BYTE_TO_T
IME(255).

T#255ms

64

dtVardt:=BYTE_TO_D
T
(255).

DT#1970-
01-01-
00:04:15

rVarreal:=BYTE_TO_R
EAL(255).

255

stVarstring:=BYTE_TO
_STRING(255).

'255'

Table 3-40 Example of BYTE_TO_<TYPE> conversion ladder instruction
4) <integer data>_TO_<TYPE> integer type conversion instruction
Function: Converts integer type data to other data types.
Supported data types: BOOL, BYTE, SINT, WORD, DWORD, USINT, INT, UINT, DINT,
UDINT, REAL, TIME, DATE, TOD, DT, and STRING.

a. When the output is BOOL: TRUE if the input is not equal to 0. FALSE if the input is equal to 0.
b. When the output is TIME or TOD, the input will be converted in millisecond values.
c. When the output is DATE or DT: the input will be converted in seconds value.

[Example 3.71] Since there are many integer types and the conversion process is similar,
WORD_TO_<TYPE> is used as an example, as shown in Table 3-41.

Conversion
Instructions

Graphical language Textualized Language Results

<shaping
data>_TO

iVarsint:=WORD_TO_USINT(4836
).

255

tVartime:=WORD_TO_TIME(4836)
.

T#4s863m
s

dtVardt:=BYTE_TO_DT(4836). DT#1970-
01-01-
01:21:03

Table 3-41 Example of <integer data>_TO_<TYPE> conversion ladder instruction
5) REAL_TO_<TYPE> real type conversion instruction
The function converts a floating-point number to other types of data. When converting floating point

numbers to other types of data, the value is first rounded to an integer value, and then converted to the new
quantity type.

Supported data types: BOOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL,
TIME, DATE, TOD, DT, and STRING.

a. When the output is BOOL: TRUE if the input is not equal to 0. FALSE if the input is equal to 0.
b. When the output is TIME or TOD: the input will be converted in millisecond values.
c. When the output is DATE or DT: the input will be converted in seconds value.

[Example 3.72] REAL_TO_<TYPE> example is shown in Table 3-42 below.
Conversion
Instructions

Graphical language Textualized Language Results

REAL_TO iVarsint:=REAL_TO_INT(1.5). 2

6) TIME_TO_<TYPE> time type conversion instruction
Function: Converts time-based data to other types of data, where time is stored internally in milliseconds

as DWORD type (for TIME_OF_DAY variable starting from 00:00 am).
Supported data types: BOOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL,

TIME, DATE, TOD, DT, and STRING.
When the output is BOOL: TRUE if the input is not equal to 0. FALSE if the input is equal to 0.
[Example 3.73] The TIME_TO_<TYPE> example is shown in Table 3-43 below.
Conversion
Instructions

Graphical language Textualized Language Results

65

TIME_TO

sVarstring:=
TIME_TO_STRING(t#12ms
).

'T#12ms'

dVardword:=
TIME_TO_DWORD(t#5m).

300000

Table 3-43 Examples of TIME_TO_<TYPE> Conversion Ladder Instructions
7) DATE_TO_<TYPE> Date Type Conversion Directive
Function: Convert date type data to other type data, date is stored internally in seconds, time starts from

Jan. 1, 1970.
Supported data types: BOOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL,

TIME, DATE, TOD, DT, and STRING.
When the output is BOOL: TRUE if the input is not equal to 0. FALSE if the input is equal to 0.

[Example 3.74] DATE_TO_<TYPE> example is shown in Table 3-44 below.
Conversion
Instruction

s

Graphical language Textualized Language Results

DATE_TO

sVarstring:=
DATE_TO_STRING(D
#1970
-01-01).

'D#1970
-01-01'

iVarint:=
DATE_TO_INT(D#197
0-
01-01).

29952

Table 3-44 Example of DATE_TO_<TYPE> conversion ladder command
8) DT_TO_<TYPE> Date Time Type Conversion Instruction
Function: Converts date-time type data to other types of data. The date is stored internally in seconds,

and the time starts from January 1, 1970.
Supported data types: BOOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL,

TIME, DATE, TOD, DT, and STRING.
When the output is BOOL: TRUE if the input is not equal to 0. FALSE if the input is equal to 0.
[Example 3.75] DT_TO_<TYPE> example is shown in Table 3-45 below.
Conversion
Instructions

Graphical language Textualized Language Results

DT_TO

byVarbyte:=
DT_TO_BYTE(DT#197
0-01-15-05:05:05).

129

sVarstr:=DT_TO_STRI
NG(DT#1998-02-
13-05:05:06).

'DT#1998-
02-13-
05:05:06'

Table 3-45 Example of DT_TO_<TYPE> conversion ladder instruction
9) TOD_TO_<TYPE> time type conversion command
Function: Converts time-based data to other types of data, and dates are converted internally in

milliseconds.
Supported data types: BOOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT, UDINT, REAL,

TIME, DATE, TOD, DT, and STRING.
When the output is BOOL: TRUE if the input is not equal to 0. FALSE if the input is equal to 0.
[Example 3.75] TOD_TO_<TYPE> example is shown in Table 3-46 below.
Conversion
Instruction

s

Graphical language Textualized
Language

Results

iVarusint:=TOD_TO_
USINT(T
OD#10:11:40).

96

66

TOD_TO

tVartime:=TOD_TO_T
IME(TOD
#10:11:40).

T#611m40s0
ms

dtVardt:=TOD_TO_D
T(TOD#10
:11:40).

DT#1970-01
-01-10:11:40

rVarreal:=TOD_TO_R
EAL(TOD
#10:11:40)

3.67e+007

Table 3-46 Example of TOD_TO_<TYPE> conversion ladder instruction
10) STRING_TO_<TYPE> character type conversion instruction
Function: Convert a string to other type data, the string type variable must contain a valid target variable

value, otherwise the conversion result is 0.
Supported data types: BOOL, BYTE, WORD, DWORD, SINT, USINT, INT, UINT, DINT,
UDINT, REAL, TIME, DATE, TOD, DT, and STRING.
[Example 3.76] Example of STRING_TO_<TYPE> is shown in Table 3-47 below.
Conversion
Instructions

Graphical language Textualized Language Results

STRING_T
O

wVarword:=STRING_TO
_WORD('CoDeSys').

0

tVartime:=STRING_TO_
TIME('T#128ms'). T#128ms

Table 3-47 Example of STRING_TO_<TYPE> conversion ladder instruction
11) rounding TRUNC
Function: Truncate the decimal part of the data and keep only the integer part.
Support data type: input is REAL type, output is INT, WORD, DWORD type.
Example 3.77] Example of TRUNC rounding instruction is shown in Table 3-48 below.

Conversion
Instructions

Graphical language Textualized Language Results

TRUNC iVarint: = TRUNC (1.7) 1

iVarint: = TRUNC (-1.2) -1

Caution:
1. There is a possibility of losing information when going from a larger data type to a smaller data type.
2. This instruction only intercepts the integer part. If you want to round up to the nearest whole number,

you can use the REAL_TO_INT instruction.

3.7 Ladder Diagram (LD)/Function Block (FBD)

3.7.1 Introduction to the ladder/function block diagram programming

language
Two graphic programming languages are defined in the IEC 61131-3 standard. They are the

LadderDiagram (LD) programming language and the FunctionBlockDiagram (FBD) programming language.
The LadderDiagram programming language uses a series of ladder steps to form a ladder diagram that
represents the relationship between variables in an industrial control logic system. The Function Block
Diagram programming language represents the ontological part of the program organization unit with a series

67

of connections of function blocks.
1) Ladder diagram (LD)
Ladder diagram originated from the United States, it is based on a graphic representation of the relay

logic, is the most widely used in PLC programming a graphical language. The ladder program has two vertical
power rails on the left and right sides. The power rail on the left nominally provides energy for the power flow
from left to right along the horizontal ladder through each contact, function, function block, coil, etc., and the
power flow ends at the power rail on the right. Each contact represents the state of a Boolean variable, each
coil represents the state of an actual device, and the function or function block corresponds to a standard
library in IEC 1131-3 or to a user-created function or function block.

Ladder diagram is the most widely used programming language in China, it is also one of the three
graphic programming languages of IEC1131-3, ladder diagram is the most used traditional PLC graphic
programming language, also known as the first programming language of PLC. According to the state and
logic relationship of each contact in the ladder diagram, to find out the state of the programming element
corresponding to each coil in the diagram is called the logic solution of the ladder diagram.

Some programming components in the ladder diagram follow the name of relays, such as coils, contacts,
etc., but they are not real physical relays, but some storage units (soft relays), each soft relay and PLC
memory in the image register of a storage unit corresponding to. If the memory unit is "TRUE" state, it means
that the corresponding soft relay's coil in the ladder diagram is "energized", its normally open contacts are on,
normally closed contacts are off, and this state is called the soft relay's "TRUE " or "ON" state of the soft relay.
If the memory cell is in the "FALSE" state, the state of the coil and contacts of the corresponding soft relay is
the opposite of the above, and the soft relay is in the "FALSE" or "OFF" state. These "soft relays" are often
referred to as programming elements in use.

2) Functional Block Diagram (FBD)
Function block diagrams are used to characterize the behavior of functions, functional blocks, and

programs, and to characterize the behavior of steps, actions, and transitions in sequential functional flow
diagrams. Function block diagrams are very similar to signal flow diagrams in electronic circuit diagrams,
which in a program can be seen as a flow of information between two process elements. Function block
diagrams are commonly used in the field of process control.

The function block is represented by a rectangular block, and each function block has no less than one
input on the left side and no less than one output on the right side. The type of name of the function block is
usually written inside the block, but the name of the function block instance is usually written in the upper part
of the block, and the input and output names of the function block are written in the corresponding places of
the input and output points inside the block.

3) Program execution order
The execution process of ladder diagram and function block diagram is similar, both are executed in the

order of left to right and top to bottom, as in Figure 3.7shown.

Figure 3.7 Program execution sequence

 Execution process
a. busbar
Ladder diagrams use a network structure, and the network of a ladder diagram is bounded by the left bus.

When analyzing the logical relationships of ladder diagrams, to use a relay circuit diagram analysis, imagine

68

that there is a positive left and negative right DC supply voltage between the left and right buses (left and right
buses), and that there is "energy flow" from left to right between the buses. The right bus is not shown.

b. section
A section is the smallest unit in the ladder network structure. The network of related logic starting from an

input condition and ending at a coil is called a section. In the editor, sections are arranged vertically. In
CodeSys, each section is represented by a series of section numbers on the left side, containing input and
output instructions, consisting of logical equations, arithmetic expressions, programs, jumps, returns or
function block call instructions.

To insert a section, you can use the command Insert section or drag it from the toolbox. The elements
contained in a section can all using the drag and drop in the editor to copy or move.

When executing the ladder diagram, start from the section with the smallest label, determine the state of
each element from left to right, and determine its state of the right connection element. The elements is
executed one by one to the right, and the result of the operation execution is output by the execution control
element. Then the execution process of the next section is carried out. Figure 3.7 shows the execution
process of the ladder diagram.

c. Energy flow diagram
The bold blue line on the left in 4.7 is the energy flow, which can be interpreted as a hypothetical

"conceptual current" or "PowerFlow" flowing from left to right, in the same direction as the logical operations
performed in the user program. Energy flow can only flow from left to right. Using the concept of energy flow
can help us better understand and analyze ladder diagrams.

d. branch
When there are branches in the ladder diagram, the state of each graphical element is also analyzed

according to the top-to-bottom, left-to-right order of execution. For vertically connected elements the state of
their right connected elements is determined according to the above-mentioned regulations, so that the
evaluation process is executed one by one from left to right and from top to bottom. In ladder diagrams, the
solving of values without feedback paths is not very clear. All its external input values with these relevant
contacts must be evaluated before each ladder stage.

 Execution control
a. Jump and return
When the jump condition is met, the program jumps to the section marked by Label and starts execution

until the execution of that part of the program reaches RETURN, when it returns to the original section and
continues execution. The structure diagram is shown in 3.8.

Figure 3.8 Jump instruction execution process
When the program executes to Label1 on the left side of Figure 3.8, the program starts to execute a jump

and jumps directly to the right side of Figure 3.8, finds the segment labeled with Label1 and starts to execute
the next program until the program runs to RETURN, then the execution of the jump program is completed
and returns to the main program loop on the left side of the figure.

The jump and return instructions in CodeSys using the ladder are as follows, as shown in Example 3.18.

69

[Example 3.18] Example of executing a program using a jump instruction.

Figure 3.9 Jump instruction execution
As shown in Figure 3.9, when bInput1 is set to TRUE, the main program executes the jump statement

and according to label Label1, the program jumps to the Label1 segment in Section 3. It is easy to see from
Figure 3.9 that even though bInput3 in Section 2 is set to ON, bOutput2 is never set to TRUE because the
program skips the statement directly. bOutput2 is only TRUE when bInput1 is FALSE and bInput3 is TRUE.

3.7.2Connecting elements
The ladder diagram language in IEC1131-3 is a reasonable absorption and reference to the ladder

diagram language of each PLC manufacturer, and each graphic symbol in the language is basically the same
as that of each PLC manufacturer, Figure 3.10 shows the ladder diagram editor view. the main graphic
symbols of IEC61131-3 include:

a. Basic connection class: power cabinet first, connecting elements.
b.①Contact category: Normally open contact, normally closed contact, positive conversion readout

contact, negative conversion contact.
c.②Coils: general coils, inverse coils, set (latch) coils, reset de-lock coils, hold coils, set hold coils
d. Coil, reset hold coil, positive changeover readout coil, negative changeover readout coil.
e.③Functions and function blocks: Include standard functions and function blocks as well as user-

defined function blocks.

Figure 3.10 Ladder Diagram Editor
 Line element
1) Power rail line (bus bar)
The graphical element of the ladder power rail (PowerRail) is also called the bus bar. Its graphical

representation is located on the left side of the ladder diagram and can also be
It is called the left power bus. Figure 3.11 shows a graphical representation of the left busbar.

Figure 3.11 Graphical representation of the left bus bar
2) Connection cable
In a ladder diagram, the graphical symbols are connected by connecting lines, and the graphical symbols

of connecting lines are horizontal and vertical lines, which are the most basic elements forming the ladder
diagram. Figure 3.12's a) and b) are the graphic representations of horizontal and vertical connecting lines.

70

a) Horizontal connection line b) Vertical connection line
Figure 3.12 Graphical representation of connection lines

3) Rules for passing connected elements:
a. The state of the connected elements is passed from left to right, enabling the flow of energy. The

transfer of state observes the following rules:
b. The connection element connected to the left power rail line, whose state is TRUE at any moment,

which indicates that the left power rail line is starting point of the energy flow. The right power rail
line is like the zero potential in the electrical diagram.

c. The horizontally connected element is represented by a horizontal line, and the horizontally
connected element passes the state of the graphic element to the graphic element to its right.A
vertically connected element is always connected to one or more horizontally connected elements,
i.e., it is joined by one or more horizontally connected elements in each side is composed of
intersecting with the vertical line. The state of the vertically connected element is based on the
state of each left-hand horizontally connected element connected to itor arithmetic representation.

Therefore, the state of vertically connected elements is determined according to the following rules:
a. If the state of all connected horizontally connected elements on the left is FALSE, the state of this

vertically connected element is FALSE.
b. If the status of one or more horizontally connected elements on the left is TRUE, the status of that

vertically connected element is TRUE.
c. The state of a vertically connected element is passed to all horizontally connected elements

connected to it, but not to the left of itelement of all horizontally connected elements.
[Example 3.19] Example of connecting elements and state passing.

Figure 3.13 Example of connected elements and states
Figure 3-13 shows an example of connected elements and their states. Connection element 1 is

connected to the left power rail line and its status is TRUE.
a. Connected element 2 is connected to connected element 1 and its state is passed from connected

element 1 and, therefore, its state is TRUE.
b. Connected element 3 is the vertically connected element which is connected to the horizontally

connected element 1 with the status TRUE.
c. Connection elements 2 and 3 are passed 4, 5, respectively, and since the variables bInput2 and

bInput3 corresponding to graphical elements 4 and 5 are normally open contacts, respectively, the
states of connection elements 6 and 7 become TRUE by the passing of the graphical elements.

Since all the states to the left of connected element 8 are TRUE, the state of connected element 8 is TRUE.
d. The input and output data types of the connection elements must be the same. In the standard, the

data types of graphical elements such as contacts and coils are not limited to Boolean types.
Therefore, connecting elements with the same input and output data types is necessary to ensure
correct state transfer.

 Section
Sections are the basic entities of LD and FBD. In the LD/FBD editor, sections are arranged in numerical

order. Each section starts with a section number on the left side and has a structure consisting of logical or

71

arithmetic expressions, procedures, functions, function block calls, and jump or return instructions. The
schematic diagram of the sections is shown in Figure 3.14 shaded in red with the sequential numbering.

Figure 3.14 Section view

1) Section comment
A section can also be assigned a title, a comment, and a marker. The availability of the title and comment

fields can be turned on or off via the Tools-->Options-->FBD, LD, and IL Editors dialog box, as shown in
Figure 3.15. This is shown in Figure 3.15.

Figure 3.15 Section header comments and marker functions
If the above option is enabled, the user can open an edit area for the header by clicking with the mouse

below the upper boundary of the section. Entering a comment opens the corresponding edit area under the
header area. Comments can be multi-line. Line feeds can be achieved by using the Enter key, and comment
text entry is terminated by [Ctrl]+[Enter]. Figure 3.16 shows the view of section header comments and section
notes.

72

Figure 3.16 Section heading notes and section notes

2) Section title comment
The section can also be set to "comment state" by "Toggle section comment state", after which the

section will be displayed as a comment and will not be execution.
3) Section branching

Create "subsections" by inserting " " in the toolbox, as in Figure 3.17 where the branching
function is used.

Figure 3.17 Creating subsections by branching function
 Label
A tag is an optional identifier and can be addressed when a jump is defined. It can contain any character.
Under the section area, each FBD, LD or IL section has a text input area to define a marker. The marker

is an optional identifier for the section that can be addressed when defining a jump, and it can contain
characters in any order.

1) Use in FBD
Right-click in the margin of the section and select "Insert Label", as shown in Figure 3.18 in 1, then Label:

will pop up in 2, and the user can edit it.

73

Figure 3.18 Adding a marker to a section

 Contacts
1) Contact type
Contacts are the graphical elements of a ladder diagram. The contact (Contact) of a ladder diagram

follows the contact terminology of electrical logic diagrams and is used to represent a change of state of a
Boolean variable. A contact is a ladder diagram element that passes a state to the horizontally connected
element to its right.

The contacts can be divided into NormallyOpenContact (NO) and NormallyClosedContact (NC). Normally
open contact means under normal operating conditions, the contact is open, and its state is FALSE. normally
closed contact means under normal operating conditions, the contact is closed, and its state is True. table 3-8
lists the common contact graphic symbols and descriptions in CodeSys ladder diagram.

Type Graphical
symbols

Description

Normally open
contacts

If the contact corresponds to the current Boolean variable value of
True, the contact is sucked, and if the state of the connected
element on the left side of the contact is True, the state TRUE is
passed to the right side of the contact, making the state of the
connected element on the right side True. conversely, when the
Boolean variable value is False, the state of the connected element
on the right side is FALSE.

Normally
closed contacts

If this contact corresponds to the current Boolean variable value of
False, the normally closed contact is in the sucking state, and if the
state of the connected element on the left side of the contact is
True, the state True is passed to the right side of the contact,
making the state of the connected element on the right side True.
conversely, when the Boolean variable value is True, the contact is
broken, and the state of the connected element on the right side is
False.

Insert right
contact

Multiple contacts in series can be made, and the contact is inserted
on the right side. The last contact can transmit True only when
multiple contacts connected in series are all in the engaged state.

Inserted under
parallel often
Open contact

Parallel connection of multiple contacts is possible, and normally
open contacts are inserted in parallel on the lower side of the
contacts. Of the two parallel contacts
Only one contact needs to be True, then the parallel line transmits
True.

Inserted under
parallel often
Closed
contacts

Parallel connection of multiple contacts is possible, and normally
closed contacts are inserted in parallel on the lower side of the
contact. The normally closed contact is closed by default. If the
contact corresponds to the current Boolean variable value of False,
when the state of the connected element on the left side is True, the
parallel contact transmits True on the right side.

74

Type Graphical
symbols

Description

Inserted in
parallel on
often
Open Contact

Parallel connection of multiple contacts is possible, and normally
open contacts are inserted in parallel on the upper side of the
contacts. Only one of the two parallel contacts needs to be True,
then the parallel line transmits True.

Table 3-8 Graphical symbols and descriptions of contact elements
2) State transfer rules
According to the state of the contact and the state of the left connection element to which the contact is

connected, the following rules determine the graphic symbol on its right sideStatus.
a. When the state of the graphical element on the left side of the contact is TRUE, only then can its

state be passed to the graphical element on the right side of the exit point, according to the following
principle for transmission:

 If the state of the contact is TRUE, the state of the graphical element to the right of the contact is
TRUE.

 If the state of the contact is FALSE, the state of the graphical element to the right of the contact is
FALSE

b. When the state of the graphical element on the left side of the contact is FALSE, the state of the
contact cannot be passed to the right graphic element of the contact, the status of the right graphic
element is FALSE.

c. from FALSE-->TRUE in the contact left side of the left side of the graph changes, its relevant
variables also from FALSE-->TRUE, then the

The right graphical state of the contact goes from FALSE --> TRUE and remains for one cycle before
changing to FALSE, then this is called rising edge trigger.

d. from TRUE --> FALSE in the contact left side of the graph left change, its relevant variables also
from TRUE --> FALSE, then the right side of the contact graph state from TRUE --> FALSE, and hold
a cycle, and then change to TRUE, then this is called falling edge trigger.

 Coil
1) Coil type
Coils are the graphical elements of ladder diagrams. Coils in ladder diagrams follow the coil terminology

used in electrical logic diagrams to represent Boolean-type variables of state change.
According to the different characteristics of the coils, they can be divided into instantaneous coils and

latching coils, and latching coils are divided into setting coils and resetting coils. Table
4-9 lists the common coil graphic symbols and descriptions in CodeSys ladder diagrams.

Type Graphica
l

symbols

Description

Coils The state of the left connected element is passed to the relevant
Boolean variable and the right connected element. If the state of the left
connected element of the coil is TRUE, the Boolean variable of the coil
is TRUE, and vice versa the coil is FALSE.

Positioning
coil

There is an S in the coil. When the state of the left connected element is
TRUE, the Boolean variable for that coil is set and held until reset by
Reset of the coil.

Reset coil The coil has an R. When the state of the left connected element is
TRUE, the Boolean variable of this coil is reset and held until set by Set
of the coil.

Table 3-9 Graphical symbols and descriptions of coil elements
2) Coil transfer rules
A coil is a ladder element that passes the state of the left-hand horizontally or vertically connected

element unchanged to its right-hand horizontally connected element. During the transfer, the state of the
relevant variables and direct addresses of the left-hand connection are stored in the appropriate Boolean
variables. Conversely, an inverted coil is a ladder element whose left-hand horizontally or vertically connected
element's state is inverted and passed to the ladder element passed to its right-hand horizontally connected
element.

The place and reset coils hold the state of the left side horizontally connected element from FALSE to

75

TRUE and from TRUE to FALSE for one seek cycle at the instant and pass its left side horizontally connected
element state to the right side horizontally connected element at other times.

The rising-edge and falling-edge coils hold the variables of the coils in question for one seek cycle at the
moments when the state of their left-hand horizontal connection element goes from FALSE to TRUE and from
TRUE to FALSE and pass the state of their left-hand horizontal connection element to their right-hand
connection horizontal element at other times.

It is not formulated that only one element can be linked on the right side, so the user can expand on the
right side for the purpose of simplifying the program. For example, other coils can be linked in parallel on the
right side, as shown in Example 3.20.

[Example 3.20] Transfer of coil state.

Figure 3.19 Transfer of coil states
Figure 3.19 shows the transfer process of the coil state. In the figure, when the contact bInput is closed,

the state of the connection element to the right of its contact is also TRUE, and it is connected to the coils
bOutputVar1 and bOutputVar2 after the horizontal and vertical connection elements, respectively, and its state
is also set to TRUE.

3) Dual Coil
A humbucker is when the same coil is used twice or more in a user program, a phenomenon known as

humbucker output.
Figure 3.20 (a) has two coils with output variable "bOutputVar1". In the same scan cycle, the logic

operation results of the two coils may be opposite, i.e., one coil of variable bOutputVar1 may be "energized "
and the other one may be "powered off". For the variable bOutputVar1 control, it is the state of the last
bOutputVar1 coil that really makes a difference.

The on/off state of the coil of bOutputVar1, in addition to acting on the external load, may also, through its
contacts, influence the program.

The state of the variables of the Therefore, the phenomenon of humbucker output should be generally
avoided, and the humbucker problem should be solved by using the parallel connection adopted in Figure
3.20 (b) as much as possible.

a) Dual Coil b) Avoid Dual Coil
Figure 3.20 Humbucker example

Such a dual coil output is allowed if only the logic operation corresponding to one of the coils can be
executed in the same scan cycle The Humbucker output is allowed in the following 3 cases:

a. In two program segments with opposite judgment conditions (e.g., an automatic program and a manual
program), a dual coil output is allowed. Coils of the same variable can appear once in each of the two
program segments. The PLC executes only one coil output instruction of the dual coil element in the program
segment being processed.

b. In two subroutines with opposite call conditions (e.g., automatic, and manual programs), the
phenomenon of double coils is allowed. The same variable coil can appear once in each of the two
subroutines. Instructions in a subroutine are executed only when that subroutine is called, and not when it is
not called.

c. To avoid double-coiled outputs, the set/reset instruction can be used multiple times for the same
variable.

 function and function block calls
If you want to implement the function or function block calls will use the operation block, the operation

block can represent all the POU, including the function block, the functions and even programs are included.
Function blocks such as timers, counters, etc. can be inserted in sections of FBD, LD. The operation blocks
can have any input and any output. The graphical symbols of functions and function blocks are described in
detail in Table 3-10.

76

Together with the contacts and coils, the user can also insert function blocks and programs. In the
network, they must have an input with a Boolean valuein and an output and can be used in the same position
as a contact, i.e., on the left side of the LD network.

Type Graphic
al

symbols

Description

Fast insertion
operation

Insert a function or function block and select the function and
function block you want to use by mouse according to the pop-up
dialog box. Suitable for those who are not familiar with functions and
function blocks.

Insertion of air
transport is
considered fast

Insert a rectangular block directly in the "???" where you can directly
enter the function or function block name, for users who are familiar
with functions and function blocks.

Insert with
EN/ENO
The computing
is fast

Executes a function or function block and allows state to be passed
downstream only when EN is True. Suitable for use by those less
familiar with functions and function blocks.

Insert with
EN/ENO
The air
transport is
considered fast

Insert rectangular block with EN/ENO and enter the function or
function block name directly in the "???" where the function or
function block name is entered directly. Only when EN is True, the
function or function block is executed, and the state is allowed to be
passed downstream. Suitable for users who are familiar with
functions and function blocks.

Table 3-10 Function and function block graphic symbols and descriptions
The ladder programming language supports function and function block calls. When function and function

block calls are made, the following matters need to be noted:
1) In a ladder diagram, functions and function blocks are represented by a rectangular box. Functions

can have multiple input parameters but only one return parameters. Function blocks can have multiple input
parameters and multiple output parameters.

2) The input column is on the left side of the rectangular box, and the output column is on the right side
of the rectangular box.

3) The names of the function and function blocks are displayed in the upper middle of the box, and the
function blocks need to be instantiated, and the instances are listed in the upper-middle part of the box
outside. Use the instance name of the function block as its unique identifier in the project.

4) In order to ensure that the energy flow can be passed through the function or function block, each
called function or function block should have at least one input and output parameter. For the connected
function block to execute, at least one Boolean input should be connected to the vertical left power rail line via
the horizontal ladder.

5) When the function block is called, the actual parameter value can be filled in directly at the external
connection line of the function block for that internal form parameter variable name.

[Example 3.21] Function block calls the setting of real parameters.
Figure 3.21 calls the TON delay ON function block, TON_1 is the instance name of the function block

TON after instantiation. The input form parameter PT of the function block is set to t#5s. The output form
parameter Q and ET, when the output form parameter such as ET in the example is not needed, the variables
can be left unconnected.

Figure 3.21 Setting of real parameters when calling function blocks
As you can see, the output Q of function block TON is connected to the coil bWorking. indicates that

bWorking is True when the contact bStartButton is True and bEmg_Stop is False for more than 5s. bWorking
is False when bEmg_Stop is disconnected, i.e., True.

6) If there are no dedicated input and output parameters for EN and ENO, the functions and function
blocks are executed automatically, and the status is passed downstream. In Example 3.22, the function block

77

with EN and ENO is called.

In the toolbox you can choose to insert a standard operator block " " or insert a function block with
EN/ENO " ". Copy or move by drag and drop in the editor. Figures 3.22 in a) and b) show a schematic
comparison of a standard operator block and an operator block with EN/ENO.

a)Standard arithmetic block b) Function block with EN/ENO
Figure 3.22 Comparison of the two operation blocks in FBD

In Figure 3.22, a) the function block is executed directly if the front-end conditions are met, while in b) the
function block is only executed when EN is TRUE; otherwise, the function block will not be executed by the
program even if all the front-end conditions are satisfied. If the input signal of EN in (b) is set to the constant
"TRUE", the functions of (a) and (b) are the same.

[Example 3.22] Calling a function block with EN and ENO.
Figure 3.23 shows a function block with EN and ENO. The Boolean input bEnable is used for the start of

the counter function block CTU_0 and bWorking is used as a status variable signal for this function block to
be enabled.

Figure 3.23 Calling a function block with EN and ENO
When bCounter has a rising edge trigger signal, the shape reference output variable CV is calculated by

adding 1.
 When EN is False, the operation defined by the function block ontology is not executed and the

value of ENO is False accordingly.
 When the value of ENO is True, it means that the function block is being executed.
7) Distribution
The allocation function can be interpreted as the assignment of input/output to the arithmetic block. In the

toolbox you can select the insert "" tool, drag and drop it into the editing area of the program. At this time the
budget block in the editing area corresponding to the input and output interface will appear at the small gray
diamond pattern, the reader can directly drag and drop it to the interface. After the insertion, the text string
"????" can be replaced by the name of the variable to be assigned, or you can use the button to call "Input
Assistant", and then the assignment of the variables to the input/output interface of the computing block is
completed. The assignment view is shown in Figure 3.24.

Figure 3.24 Distribution view
 Jump execution
1) Jump execution control element
The Jump execution control element is represented by a Boolean signal line terminating with a double

arrow. The jump signal line starts with a Boolean variable, the Boolean output of a function or function block,
or the energy flow line of a ladder diagram. Jumps are divided into conditional and unconditional jumps.

When a jump signal starts with a Boolean variable, function or function block output, the jump is a
conditional jump. The jump occurs only when the program control executes to the jump signal line for a
specific network marker and that Boolean value is TRUE.

An unconditional jump is unconditional if the jump signal line starts at the left power rail line of the ladder
diagram. In the function block diagram programming language, the jump is also unconditional if it starts at the
Boolean constant 1. The jump control element graphics are listed in Table 3-11.

78

Execution Control Type Graphical symbols for
execution control elements

Description

Unconditiona
l Jump

LD Language Jump directly and
unconditionally to LabelFBD Language

Conditional
Jump

LD Language Condition jumps to Label when
bInput is 1

FBD Language

Article Jump
Return

LD Language Conditional jump returns when
bInput is 1

FBD Language

2) Jump to the target
In a program organization unit, a jump target is a marker within that program organization unit where the

jump occurs. It indicates that the program will start execution from that target after the jump occurs.
3) Jump back
Jump return (Return) is divided into two categories: conditional jump return and unconditional jump return.
Applicable to conditional return from functions, function blocks, when the Boolean input returned by the

conditional jump is TRUE, program execution will jump and returns to the calling entity. When the Boolean
input is FALSE, program execution will continue in the normal way.

The unconditional jump return is provided by the physical end of the function or function block. As shown
in Table 3-11, linking the RETURN statement directly to the left track line indicates an unconditional return.

4) Jump to the execution of the configuration

Insert " " in the toolbox, after inserting, the automatically entered "????”, the marker of the jump
target is replaced.

You can enter the target's mark directly or use the input assistant to select it by clicking " "
browse key, as shown in Figure 3.25, the system will automatically filter the available markers for users to
choose.

Figure 3.25 Jump to input assistant
[Example 3.23] Example of jump statement.
In the cylinder control, the outgoing signal of the control cylinder solenoid valve is bExtrent. If no

feedback signal bExtrented_Sensor1 is received from the outgoing sensor within 5s after the outgoing signal
bExtrent is sent, the alarm program Alarm will be jumped to, and the variable declaration and program are as
follows.

PROGRAMPLC_PRG
VAR

bExtrent:BOOL.
bExtrented_Sensor1:BOOL.
fb_TON:ton.

END_VAR

79

Figure 3.26 Example program of jump statement

Figure 3.26 shows the sample program of the jump statement. Eventually, when the output signal Q of
the fb_TON function block and the bExtrent signal are satisfied at the same time, the output signal Alarm with
the logic is set to TRUE.

3.7.3 Application examples
[Example 3.24] Blinking signal light.
Control requirements
A signal blinking light system is formed using a timer and a logic function. The line output can make the

signal light ON and OFF at a certain period.
Programming
The program implements the alternation of bLamp and bLamp1
ON and OFF to achieve the control requirements of the flashing beacon. The program is shown in Figure

3.27
The ladder diagram shown is implemented.
The user can use t_SetValue to set the ON and OFF switching time, which is set to 500 milliseconds as

follows, with the specific variation
The quantities are defined as shown below:
PROGRAMPLC_PRG
VAR

fb_TON:ton;//TimeDelay
t_SetValue:TIME:=t#500ms. //SetTime
bLampAT%QX0.0:BOOL. //Output0
bLamp1AT%QX0.1:BOOL. //Output1

END_VAR

Figure 3.27 Ladder program for flashing signal light
The output effect is shown in Figure 3.28. The output curves of bLamp and bLamp1 are exactly opposite,

and the time of their state switching is exactly 1s.

80

Figure 3.28 Output graph of flashing beacon
[Example 3.25] pH control system.
1)Control requirements

a. In the process of wastewater treatment or fermentation, pH control is often required. pH control
system has non-linearity and time lag of the controlled object, so non-linearity and time lag
compensation control scheme are commonly used. However, the following control strategy
can also be used in simple control schemes: when the pH measurement exceeds the set
acidity value, wait for a certain time, and then add alkaline liquid for a certain time. When the
pH value exceeds the set value, the contact PHH closes, and vice versa, when it is less than
the set value, the alkaline valve is bValves1. The control scheme is "look and adjust".

b. When the pH control is in the linear region, it can be assumed that the change of pH in the
control process shows linearity characteristics. The addition of alkaline solution or acid
solution to neutralization is performed, the pH change is linear. Usually, the linearity holds
when the upper set value and the lower set value are small.

c. Set the time required from pH change to during fermentation as t, and the time from pH change
to after alkali addition as t2, then the delay time can be set as t1=t/2, and the time for alkali
addition control valve to open as t2.

d. The actual pH control is set at SP=()/2. Reducing the difference between and helps to improve
the control accuracy.

e. The start condition of the alkaline addition valve bValves1 is the arrival of the set time of timer t1,
therefore, the program uses t1.Q as the start conditionThe stop condition for the alkaline
addition valve bValves1 is the set time to t2, so the program uses t2.Q as the stop condition.

f. The start condition of timer t1 is that the pH reaches the set value SP, therefore, the rising edge
of contact PHH is used to trigger the fb_Trigger function block and its signal is temporarily
stored with the RS function block, and the start condition of timer t2 is that the timing of timer
t1 is reached.

81

Figure 3.29 pH control signal wavefor
2) Programming
According to the above control requirements, the pH control program is written using the ladder

programming language, and its variable declaration and program are shown in Figure 3.30
shown. Two separate timers are used in the program.
PROGRAMPLC_PRG
VAR

t1,t2:ton;//timer t1, t2
PHH:BOOL;//Exceed set value signal
bValves1AT%QX0.0:BOOL;//add lye valve
fb_R_Trig:R_Trig.
fb_RS_0,fb_RS_1:RS.

END_VAR

82

Figure 3.30 pH control ladder program
In the above figure, the program sets the time of timer t1 to 20s and the time of timer t2 to 50s. When the

time of t1 arrives, it immediately triggers the t2 timer and opens the alkaline valve to reduce the acidity, and
closes the alkaline valve when the t2 timing time arrives.

83

3.8 Structured Text (ST)

3.8.1 Introduction to Structured Text Programming Languages

3.8.1.1 Introduction

Structured Text (ST) is a high-level text language that can be used to describe the behavior of functions,
functional blocks, and programs, and to describe the behavior of steps, actions, and transitions in sequential
functional flowcharts.

Structured text programming language is a high-level language, like Pascal, a language developed
especially for industrial control applications and one of the most used in CodeSys. For those familiar with
advanced computer language development, structured text language is even easier to learn and use,
enabling functions such as selection, iteration, and jump statements. In addition, structured text languages
are easy to read and understand, especially when annotated with identifiers and annotations that have real
meaning. In complex control systems, structured text can greatly reduce their code volume and make
complex system problems simple, with the disadvantage that debugging is not intuitive, and compilation is
relatively slow. A view of structured text is shown in Figure 3.31.

Figure 3.31 Structured text view

3.8.1.2 Program execution sequence

The order of program execution using structured text is based on the "line number", starting from top to
bottom, as shown in Figure 3.32.

At the beginning of each cycle, the program line with the smaller line number is executed first.

Figure 3.32 Structured text program execution sequence

3.8.1.3 Expression execution order

An expression includes an operator and an operand. The operand operates according to the rules
specified by the operator, gets the result, and returns it. Operands can be variables, constants, register
addresses, functions, etc.

[Example 3.26] Expression example.

84

a+b+c.
3.14*R*R.
ABS(-10)+var1.
If there are several operators in an expression, the operators are executed in the agreed priority order:

the operators with higher priority are executed first, and then the operators with lower priority are executed
sequentially. If there are operators with the same priority in the expression, they are executed from left to right
in the written order. The operator priorities are shown in Table 3-12

Operators Symbols Priority
Parentheses () Highest
Function calls Functionname(Parameterlist)
power search EXPT
fetch the opposite NOT
Multiplication
Division
Mold pickup

*
/
MOD

Addition
Subtraction

+
-

Compare <,>,<=,>=
equal to
Not equal to

=
<>

Logic and AND
Logical Iso-or XOR
Logical or OR Minimum

Table 3-12 Priority of Operators

3.8.2 Instruction Statements
There are five main types of structured text statement tables, namely assignment statements, function

and function block control statements, selection statements, iteration (loop) statements, and jump statements.
Table 3-13 lists all the statements used in structured text.

Instruction Type Command
statements

Examples

Assignment Statements := bFan:=TRUE.
Function and function
block control
statements

Function block /
function call name ().

Select statement IF
IF<Boolean expression>THEN
<statement content>.
END_IF

Select statement CASE

CASE<Condition variable>OF
<value1>:<statement content1>.
...
<value n>:<statement content n>.
ELSE
<ELSE statement content>.
END_CASE.

Iterative Statements

FOR

FOR<variable>:=<initial value>TO<target
value>{BY<step
Long>}DO
<statement content
END_FOR.

WHILE
WHILE<Boolean expression>
<statement content>.
END_WHILE.

REPEAT REPEAT
<statement content

85

Instruction Type Command
statements

Examples

UNTIL
<Boolean expressions
END_REPEAT.

Jump statements

EXIT EXIT.
CONTINUE CONTINUE.

JMP
<identifier>.
...
JMP<Identifier>.

Return statement RETURN RETURN.
NULL statement .

Table 3-13 Structured Text

3.8.2.1 Assignment statement

1) Format and function
Assignment statement is one of the most commonly used statement in structured text and serves to

assign the value generated by the expression on its right side to the operand (variable or address) on the left
side, using the ":=" representation.

The specific format is as follows:
<variable>:=<expression>.

[Example 3.27] Assign values to two boolean variables separately, with bFan set to TRUE and bHeater
set to FALSE.

VAR
bFan:BOOL.
bHeater:BOOL.

END_VAR

bFan:=TRUE.
bHeater:=FALSE.
This is achieved by using the ":=" assignment statement.

2) Cautions in use
Matching of data types. If the data types on both sides of the assignment operator are different, the data

type conversion function should be called. For example.
rVar1 is Real type and iVar1 is Int integer type. When iVar1 is assigned to rVar1, the conversion function

of INT_TO_REAL should be called. Example: rVar1:=INT_TO_REAL(iVar1).
a. There can be more than one statement in a line, for example, arrData[1]:=3; arrData[2]:=12; the two

instructions can be written in one line.
[Example 3.28] There can be multiple data in a line. arrData1[i]:=iDataInLine1;arrData2[j]:=iDataInLine2.
When a function is called, the function return value is assigned as the value of the expression, which

should be the latest result of the evaluation.
[Example 3.29] The return value of a function call is used as the value of an expression.
Str1:=INSERT(IN1:='CoDe',IN2:='Sys',P:=2).
3) Function and function block control statement
Function and function block control statement are used to call functions and function blocks.
4) Function Control Statement
The function call assigns the return value directly to the variable as the value of the expression. For

example, rVar1:=SIN(rData1); statement in which the call
Use the sine function SIN and assign the return value to the variable rVar1. The statement format is as

follows:
Variable:= function name (parameter list).
[Example 3.30] Example of function control statement.
rResult:=ADD(rData1,rData2);//Use ADD function to assign the result of rData1 plus rData2 to the

variable rResult.

86

5) Function block control statement
Function block calls are made by instantiating the name of the function block, such as Timer as the

instance name of the TON function block, and the specific grid
The formula is as follows:
Function block instance name:(function block parameter).
If you need to call a function block in ST, you can directly enter the instance name of the function block

and give the function block in the subsequent parentheses
Each parameter is assigned a value or variable, and the parameters are separated by commas; function

block calls are terminated by semicolons.
For example, calling the function block TON timer in structured text, assuming its instance name is TON1,

is implemented as in Figure 3.33
shown.

Figure 3.33 Structured text call function block

3.8.2.2 Select statement

A select statement is a statement that determines the execution of its composition by selecting an
expression based on a specified condition. In terms of broad categories, they can be divided into IF and
CASE two categories.

1) IF statement
The basic format for implementing a single-branch selection structure with an IF statement is as follows.
IF<Boolean expression>THEN

<statement content>.
END_IF

If the above format is used, the statement content is executed only when the <Boolean expression> is
TRUE, otherwise the <statement content> of the IF statement is not executed. The statement content can be
a statement or can be an empty statement or can be juxtaposed with multiple statements. The flowchart of the
statement expression execution is shown in Figure 3.34.

87

Booleans

Language Content

Figure 3.34 Flow chart of simple IF statement execution
Example 3.31] Use PLC to determine whether the current temperature exceeds 60 degrees Celsius, and

if it does, always turn on the fan for heat dissipation.
VAR

nTemp:BYTE;(*Current temperature status signal*)
bFan:BOOL;(*fan switch control signal*)

END_VAR

nTemp:=80.
IFnTemp>60THEN

bFan:=TRUE.
END_IF

2) IF...ELSE statement
The basic format for implementing a two-branch selection mechanism with an IF statement is as follows:
IF<Boolean expression>THEN

<statement content1>.
ELSE

<statement content2>.
END_IF
As the above expression first determines the value inside <Boolean expression>, if it is TRUE, then

execute <statement content1>, if it is FALSE then execute <statement content 2>, and the program execution
flow chart is shown in Figure 3.35.

Booleans

Statement Content 1 Statement Content 2

Figure 3.35 Flowchart of IF...ELSE statement execution
[Example 3.32] Use PLC to determine when the temperature is less than to 20 degrees Celsius, turn on

the heating equipment, otherwise (temperature greater than or equal to 20 degrees Celsius) heating
equipment disconnected state.

VAR
nTemp:BYTE;(*Current temperature status signal*)
bHeating:BOOL;(*Heater switch control signal*)

88

END_VAR

IFnTemp<20THEN
bHeating:=TRUE.

ELSE
bHeating:=FALSE.

END_IF
When the program has more than one conditional judgment formula, then it needs another nested

IF...ELSE statement, i.e., multi-branch selection structure, with the following basic format.
IF<Boolean expression1>THEN

IF<Boolean expression2>THEN
<statement content1>.

ELSE
<statement content2>.

END_IF
ELSE

<statement content3>.
END_IF
As above, there is an IF...ELSE statement placed in IF...ELSE to achieve nesting, and the following is an

example to illustrate the use of nesting.
As the above expression first determines the value within <Boolean expression 1>, and if it is TRUE, then

continues to determine the value of <Boolean expression 2>. If the value of <Boolean expression 1> is
FALSE, <statement 3> is executed, and it returns to <Boolean expression 2> for judgment. If <Boolean
expression 2> is TRUE, <statement 1> is executed, and if not, <statement 2> is executed.

【Example 3.33】When the device enters the automatic mode, if the actual temperature is greater than
50 degrees Celsius, the fan will be turned on and the heater will be turned off, and when it is less than or
equal to 50 degrees Celsius, the fan will be turned off and the heater will be turned on, such as in the manual
mode, the heater fan will not act.

VAR
bAutoMode:BOOL;(*hand/auto mode status signal*)
nTemp:BYTE;(*Current temperature status signal*)
bFan:BOOL;(*fan switch control signal*)
bHeating:BOOL;(*Heater switch control signal*)

END_VAR

IFbAutoMode=TRUETHEN
IFnTemp>50THEN

bFan:=TRUE.
bHeating:=FALSE.

ELSE
bFan:=FALSE.
bHeating:=TRUE.

END_IF
ELSE

bFan:=FALSE.
bHeating:=FALSE.

END_IF
3) IF...ELSIF...ELSE statements
In addition, the multi-branch selection structure can be presented in the following way. The specific

format is as follows
IF<Boolean expression1>THEN
<statement content1>.
ELSIF<Boolean expression2>THEN
<statement content2>.
ELSIF<Boolean expression3>THEN
<statement content3>.
...
...

89

ELSE
<statement content n>.
END_IF
If the expression <Boolean expression 1> is TRUE, then only the instruction <statement content 1> is

executed, and no other instruction is executed. Otherwise, the judgment starts from expression <Boolean
expression 2> until one of the Boolean expressions is TRUE, and then the contents of the statement
corresponding to this Boolean expression are executed. If none of the Boolean expressions is TRUE, then
only instruction <statement n> is executed, and the program execution flow chart is shown in Figure 3.36.

Statement
Content 1

Statement
Content 2

Statement
Content 3

Statement
Content n

Boolean

expression 1

Boolean

expression 2

Boolean

expression 3

Figure 3.36 Flowchart of IF...ELSIF...ELSE statement execution
1) CASE statement
The CASE statement is a multi-branch selection statement that causes the program to select a branch for

execution from among multiple branches based on the value of the expression, in the following basic format.
CASE<Condition variable>OF

<value1>:<statement content1>.
<value2>:<statement content2>.
<value3,value4,value5>:<statement content3>.
<value 6... Value 10>:<statement content 4>.
...
<value n>:<statement content n>.

ELSE
<ELSE statement content>.
END_CASE.

The CASE statement is executed according to the following pattern:
a. If the value of <condition variable> is <value i>, the instruction <statement content i> is executed.
b. If <condition variable> does not have any specified value, the instruction <ELSE statement

content> is executed.
c. If several values of a condition variable are required to execute the same instruction, then

several values can be written one after another and separated by commas. In this way, the common
instruction is executed, as in the fourth line of the above program.

d. If you need the conditional variables to execute the same instructions within a certain range, you
can separate them by writing the initial and final values with two points. In this way, the common
instruction is executed as in the fifth line of the above program.
[Example 3.34] When the current state is 1 or 5, device 1 runs and device 3 stops; when the state is 2,

device 2 stops and device 3 runs; if the current state is between 10 and 20, device 1 and device 3 both run,
and in other cases, device 1, 2, and 3 are required to stop, and the specific code to achieve this is as follows:

VAR
nDevice1,nDevice2,nDevice3:BOOL;(*Device1..3 switch control signal*)

90

nState:BYTE;(*Current state signal*)
END_VAR
CASEnStateOF
1,5.

nDevice1:=TRUE.
nDevice3:=FALSE.

2.
nDevice2:=FALSE.
nDevice3:=TRUE.

10..20.
nDevice1:=TRUE.
nDevice3:=TRUE.

ELSE
nDevice1:=FALSE.
nDevice2:=FALSE.
nDevice3:=FALSE.

END_CASE.

Equipment 1 on;
Equipment 3 off;

other

Equipment 2 off;
Equipment 3 on;

Equipment 1 on;
Equipment 3 on;

Equipment 1 off;
Equipment 2 off;
Equipment 3 off;

Figure 3.37 Flowchart of CASE statement example
The CASE statement flowchart is shown in Figure 3.37, where device 1 is on and device 3 is off when

nState is 1 or 5;
nState is 2 when device 2 is off and device 3 is on;
nState is 10 to 20 when device 1 is off and device 3 is on;
In other cases, device 1 is off, device 2 is off, and device 3 is off.
2) Iterative statement
Iteration statements are mainly used for programs that are executed repeatedly. In CodeSys, the

common iteration statements are FOR, REPEAT and the WHILE statement, which is explained in detail below.
 FOR loop
The FOR loop statement is used to compute an initialization sequence. When a condition is TRUE, the

nested statements are repeated and a sequence of iterative expressions is computed, and the loop is
terminated if it is FALSE.

FOR<variable>:=<initial value>TO<target value>{BY<step>}DO
<statement content
END_FOR.

 The order of execution of the FOR loop is as follows:
a. Calculating whether the <variable> is within the range of <initial value> and <target value>.
b. Execute <statement content> when <variable> is less than <target value>.
c. When <variable> is greater than <target value>, <statement content> is not executed.
d. Each time <statement content> is executed, <variable> always increases its value by the

specified step size. The step size can be any integer value.
If no step is specified, the default value is 1. Exit the loop when <variable> is greater than <target value>.
In a sense, the principle of FOR cycle is like a photocopier, where the number of copies to be copied is

first preset on the photocopier, and here is the condition of the cycle, and when the condition is satisfied, the
number of copies is equal to the set number of copies, the copying stops.

The FOR loop is the most common type of loop statement. The FOR loop embodies a function that
specifies number of iterations, one after the other. But other loop functions can also be implemented due to
different ways of writing the code. Here is an example to demonstrate how to use a FOR loop.

[Example 3.35] Use a FOR loop to implement the fifth power of 2 calculation.
VAR

Counter:BYTE;(*loop counter*)
Var1:WORD;(*output result*)

91

END_VAR

FORCounter:=1TO5BY1DO
Var1:=Var1*2.
END_FOR.
Suppose the initial value of Var1 is 1, then the value of Var1 at the end of the loop is 32.
Caution:
If <target value> is equal to the limit value of <variable>, it will enter a dead loop. Suppose the type of the

counter variable Counter in [Example 5.X] is SINT (-128 to 127), and the controller will enter a dead loop if the
<target value> is set to 127. Therefore, you cannot set the limit value for <Target value>.

 WHILE loop
The WHILE loop is used in a similar way to the FOR loop. The difference between the two is that the end

condition of a WHILE loop can be any logical expression. That is, you can specify a condition and when that
condition is met, the loop is executed in the following format.

WHILE<Boolean expression>
<statement content>.
END_WHILE.
The WHILE loop is executed in the following order:

a. Computes the return value of a <Boolean expression>.
b. When the value of <Boolean expression> is TRUE, the <statement content> is repeated.
c. When the initial value of <Boolean expression> is FALSE, then the instruction <statement

content> will not be executed and jumps to the end of the WHILE statement. The flowchart is shown in
Figure 3.38

Expression

statement

Figure 3.38 Flowchart of WHILE statement
Caution:
If the value of <Boolean expression> is always TRUE, then a dead loop will be generated and should be

avoided. Dead loops can be avoided by changing the condition of the loop instruction. For example, use an
incrementable or decrementable counter to avoid dead loops.

The WHILE statement controls a motor as in a project when the "Start" button is pressed (when the
Boolean expression is TRUE).

The motor keeps rotating, and when the "Stop" button is pressed (when the Boolean expression is
FALSE), the motor stops immediately. The following is an example of how to use the WHILE loop.

[Example 3.36] The program inside the loop is always executed as long as the counter does not go to
zero.

VAR
Counter:BYTE;(*Counter*)
Var1:WORD.

END_VAR

WHILECounter<>0DO
Var1:=Var1*2.

92

Counter:=Counter-1.
END_WHILE
In a certain sense, WHILE loops are more powerful than FOR loops, since WHILE loops do not need to

know the number of loops before they are executed. Therefore, in some cases, it is sufficient to use only
these two loops. However, if the number of loops is clearly known, then the FOR loop is better because the
FOR loop avoids creating dead loops.

 REPEAT loop
The REPEAT loop differs from the WHILE loop in that the REPEAT loop checks the end condition only

after the instruction has been executed. This means that the loop is executed at least once, regardless of the
end condition.

The specific format is as follows.
REPEAT

<statement content
UNTIL

<Boolean expressions
END_REPEAT.
 The REPEAT loop is executed in the following order:
a. Executes <statement content> when the value of <Boolean expression> is FALSE.
b. Stops the execution of <statement content> when the value of <Boolean expression> is TRUE.
c. After the first execution of <statement content>, if the value of <Boolean expression> is TRUE, then

<statement content> is executed only once.
Caution:
If the value of <Boolean expression> is always TRUE, then a dead loop will be generated and should be

avoided. This can be done by changing the loop
The conditions in the instruction section are used to avoid dead loops. For example, the use of

incrementable and decrementable counters to avoid dead loops.
The following is an example that demonstrates how to use the REPEAT loop.
[Example 3.37] Example of REPEAT loop, when the counter is 0, then stop the loop.
VAR

Counter:BYTE.
END_VAR

REPEAT
Counter:=Counter+1.
UNTIL
Counter=0
END_REPEAT.
The result of this example is that each program cycle enters this REPEAT loop and Counter is BYTE (0-

255), which means that 256 self-additive calculations are performed in each cycle.
Because of the previously mentioned "this means that the loop is executed at least once regardless of

the end condition", Counter is first set to 1 whenever this REPEAT statement is entered, and the
Counter:=Counter+1 instruction is executed 256 times in each cycle until the Counter variable is accumulated
until it overflows to 0, jumping out of the loop. It is added to the overflow again, and so on and so forth.

 Jump statement
1) EXIT statement
If the EXIT instruction is used in the FOR, WHILE and REPEAT loops, the inner loop stops immediately,

regardless of the end condition, in the following format.
EXIT.
[Example 3.38] Use the EXIT instruction to avoid dividing by zero when using iterative statements.

FOR Counter:=1 TO 5 BY 1 DO
INT1:=INT1/2.

IF INT1=0 THEN
EXIT;(*Avoid program division by zero*)

END_IF
Var1:=Var1/INT1.
END_FOR
When INT1 equals 0, the FOR loop ends.

2) CONTINUE statement

93

This instruction is an extension of the IEC 61131-3 standard. The CONTINUE instruction can be used in
three types of loops: FOR, WHILE and REPEAT.

The CONTINUE statement breaks the loop, ignoring the code that follows it and starting a new loop
directly. When multiple loops are nested, the CONTINUE statement can only cause the loop statement that
directly contains it to start a new loop, as follows.

CONTINUE.
[Example 3.39] Use the CONTINUE instruction to avoid dividing by zero when using iterative statements.
VAR

Counter:BYTE;(*loop counter*)
INT1,Var1:INT;(*intermediate variable*)

Erg:INT;(*output result*)
END_VAR

FORCounter:=1TO5BY1DO
INT1:=INT1/2.

IFINT1=0THEN
CONTINUE;(*to avoid dividing by zero*)

END_IF

Var1:=Var1/INT1;(*execute only if INT1 is not equal to 0*)
END_FOR.
Erg:=Var1.
3) JMP statement
Jump statement, the jump instruction can be used to jump unconditionally to a line of code that uses the

jump good marker, in the following format.
<identifier>.
.
JMP<Identifier>.
<identifier> can be any identifier that is placed at the beginning of a program line. the JMP instruction is

followed by the jump destination, which is a predefined identifier. When the JMP instruction is executed, it will
jump to the program line corresponding to the identifier.

Note: You must avoid creating dead loops, which can be combined with the use of IF conditional control
jump instructions.

[Example 3.40] Use JMP statement to implement counter to loop in the range of 0..10.
VAR

nCounter:BYTE.
END_VAR

Label1:nCounter:=0.
Label2:nCounter:=nCounter+1.

IFnCounter<10THEN
JMPLabel2.

ELSE
JMPLabel1.

END_IF
Label1 and Label2 in the above example are labels, not variables, so there is no need to make variable

declarations in the program.
The IF statement determines whether the counter is in the range of 0-10, if it is, then the statement

JMPLabel2 is executed and the program will jump to to Label2 in the next cycle and execute the program
nCounter:=nCounter+1 to self-add 1 to the counter, and vice versa, it will jump to Label1 and execute
nCounter:=0 to counter to zero.

The functionality in this example can also be achieved by using FOR, WHILE or REPEAT loops. In
general, the use of JMP jump directives should be avoided, as this reduces the readability and reliability of the
code.

4) RETURN instruction
The RETURN instruction is a return instruction to exit the Program Organization Unit (POU) in the

following format.

94

RETURN.
[Example 3.41] Use the IF statement as a judgment to terminate the execution of this program

immediately when the condition is satisfied.
VAR

nCounter:BYTE.
bSwitch:BOOL;(*switch signal*)

END_VAR

IFbSwitch=TRUETHEN
RETURN.
END_IF.
nCounter:=nCounter+1.
When bSwitch is FALSE, nCounter always performs self-adding 1. If bSwitch is TRUE, nCounter keeps

the value of the previous cycle and immediately exits this Program Organization Unit (POU).
7、Empty statement
That is, nothing is executed.
The specific format is as follows.
.
8、Comments
Comments are a very important part of a program, making it more readable without affecting the

execution of the program. In comments can be added anywhere in the declaration section or the execution
section of the ST editor.

In the ST language, there are two methods of annotation:
1) Multi-line comments start with (* and end with *). This comment method allows multi-line comments, as

shown in Figure 3.39 of a).
2) Single line comment starts with "//" and continues to the end of the line. This is the method for single

line comments, as shown in Figure 3.39, b)

a) Multi-line comments b) Single line comments
Figure 3.39 Structured text language annotation

3.8.3Application examples

3.8.3.1 Control requirements

[Example 3.24] Hysteresis function block FB_Hystersis.
This function block has three input signals, the current real-time value input signal, the comparison set

value input signal and the deviation value input signal. In addition, an output value is required. when the
output is TRUE, the output switches to FALSE only when the input signal IN1 is smaller than VAL-HYS. when
the output signal is FALSE, the output switches to FALSE only when the input signal IN1 is larger than
VAL+HYS.

The output is switched to TRUE only when the output is switched to TRUE.
The input and output variables of the function block FB_Hystersis are defined as follows.
FUNCTION_BLOCKFB_Hysteresis
VAR_INPUT

IN1:REAL;//Input signal
VAL:REAL;//Compare signals
HYS:REAL;//Hysteresis deviation signal

95

END_VAR

VAR_OUTPUT
Q:BOOL.

END_VAR
The schematic diagrams of the hysteresis process and the functional block graphics are shown in Figure

3.40 for a) and b), respectively.

Figure 3.40 Hysteresis function block
Hysteresis process schematic b) Functional block graphic schematic

3.8.3.2 Function block programming

The procedure of the function block body for determining the input signal is as follows.
IFQTHEN

IFIN1<(VAL-HYS)THEN
Q:=FALSE;//IN1 decreases

END_IF

ELSIFIN1>(VAL+HYS)THEN
Q:=TRUE;//IN1 increase

END_IF

3.8.3.3 Function Block Application

The FB_Hysteresis function block can be used for bit signal control, where IN1 links the process variable
rActuallyValue, VAL links the process set value rSetValue, and rTolerance is the desired control deviation,
and the declarative part of the program is as follows:

PROGRAMPOU
VAR

fbHysteresis:FB_Hysteresis;//fbHysteresis is an instance of the FB_Hysteresis function block
rActuallyValue:REAL;//Actually measured value
rSetValue:REAL;//process set value
rTolerance:REAL;//deviation setting value
bOutputAT%QX0.0:BOOL;//bit signal output

END_VAR
 The ontology of the program is as follows:
fbHysteresis(IN1:=rActuallyValue,VAL:=rSetValue,HYS:=rTolerance,Q=>bOutput).
The program section as above can also be represented by the following program, and the result is the

same.
fbHysteresis(IN1:=rActuallyValue,VAL:=rSetValue,HYS:=rTolerance).
bOutput:=fbHysteresis.Q.

96

Figure 3.41 Hysteresis function block program operation results
Figure 3.41 shows the results of the actual program run, where rSetValue is set to 100 and rTolerance is

set to 20. When the value of rActuallyValue is incremented from 0 to 120, the bOutput signal is set to TRUE,
and then when rActuallyValue drops to 0, bOutput also changes to FALSE, and theoretically when it drops to
80, bOutput changes to FALSE.

The function block FB_Delay is a time lag function block, which is different from the FB_Hystersis
hysteresis function block. The time at which the output signal lags the input signal in time is called time lag.
The controlled object of the production process is often described by a first-order filtering link plus time lag.
Only the time lag function block is introduced here, and the first-order filtering is not introduced much.

The transfer function of the time lag link is
(4-1)

Assuming that the sampling period is, the discretization gives, after
(4-2)

where X is the input signal of the time lag link; Y is the output signal of the time lag link. Let the sampling
period used for discretization be that

The ratio of the time lag to the sampling period is the number of lag taps N.

3.8.3.4 Variable declaration for function block FB_Delay

The program uses an array to store the input signal, and the array stores the sampling data at different
moments, cell 1 stores the moment 1× the sampled values, and the i-th cell stores the sampled values at
moment i×. The integer value of the ratio of the time lag time to the sampling period is N (the fractional part of
N is removed and denoted by N). Therefore, if the input signal is stored in cell N at a certain moment, the time
-lagged output signal should be output from storage cell 1.

FUNCTION_BLOCKFB_Delay
VAR_INPUT

IN:REAL;//Input signal
bAuto:BOOL;//Automatic manual flag signal
tCycleTime:TIME;//sampling period
tDelayTime:TIME;//time lag time

END_VAR
VAR_OUTPUT

rOutValue:REAL;//the output after the time lag link processing
END_VAR
VAR

N:INT;//lagged beat number
arrValue:ARRAY[0..2047]OFREAL;//first-in-first-out array stack
i:INT;// subscript of the array for input
j:INT;// subscript of the array, used for output
fbTrig:R_TRIG;//convert auto signal to pulse
fbTon:TON.

END_VAR

97

When the above input and output parameters are filled in, the function block diagram can be called
through the graphical programming language to see the effect schematic in Figure 3.42.

Figure 3.42 Graphical diagram of the FB_Delay function block

3.8.3.5 Program ontology of function block FB_Delay

N:=TIME_TO_INT(tDelayTime)/TIME_TO_INT(tCycleTime).
fbTrig(CLK:=bAuto).

IFfbTrig.QTHEN
i:=N.
j:=0.

END_IF
fbTon(IN:=NOTfbTon.Q,PT:=tCycleTime).

IFfbTon.QANDbAutoTHEN
i:=(i+1)MOD2000.
arrValue[i]:=i.
j:=(j+1)MOD2000.
rOutValue:=arrValue[j].

END_IF
The function block ontology uses two subscript windows to manage the access and output of the input

and output signals. The input signal data is stored in the i-subscript address of the array X with an initial value
equal to the number of lag taps. The output signal is stored in the j subscript address of the array X, and the
initial value of the output is equal to 0. The modulo method is used to determine the address of each storage
and output, and the original address is added by 1 after each operation. The next execution operation is
guaranteed to store the input of that time and the previous N input signals as the output of that time.

The number of array memory cells determines the time lag size and sampling period. The larger the time
lag and the smaller the sampling period, the more memory cells are required. Generally, the number of lag
taps N can be larger than the total number of memory cells according to the size of the application.

In the example, the number of lag beats N is required to be less than 2000 (the length of the array is
2048). In addition, the storage cells of the array start at address 0. The actual application starts at address 0.
Figure 3.43 shows the relationship between the input window and the output window.

The 1999th time storage

The 2000th time storage

The first、 the 2001st time storage

The K、 K+2001st storage

The K、 K+2001st output

The first、 the 2001st time storage

The 2001st time deposit

Figure 3.43 Relationship diagram of input/output windows

98

3.8.3.6 Notes on using function FB_Delay

The hysteresis beat number N is related to the time lag and sampling period, and the program uses the
signal for switching the running state to the automatic state as the pulse signal for the initial value setting.

This function block can be combined with a first-order filtering link for simulating actual production
processes and conducting control system simulation studies.

[Example 3.26] Calculate the maximum, minimum, and average values.
In some industrial controls, it is often necessary to calculate the average, maximum and minimum values

of several measured values. Such applications are implemented below using a structured text programming
language.

1) Control requirements
There are 32 points in a furnace where the temperature values need to be measured, and the maximum,

minimum and average values of these 32 points are calculated separately.
2) Program writing

The program defines the maximum value, minimum value, cumulative sum, and average value,
respectively, and the specific variables are defined as shown below:

PROGRAMPLC_PRG
VAR

rMaxValue:REAL;//maximum value
rMinValue:REAL;//minimum value
rSumValue:LREAL;// sum
rAvgValue:REAL;//average
arrInputBufferAT%IW100:ARRAY[1..32]OFREAL;//Input source data
i:INT.

END_VAR
The main procedure is as follows.
rSumValue:=0.
FORi:=1TO32BY1DO
rSumValue:=REAL_TO_LREAL(arrInputBuffer[i])+rSumValue.

IFarrInputBuffer[i]>rMaxValueTHEN
rMaxValue:=arrInputBuffer[i].

END_IF
IFarrInputBuffer[i]<rMinValueTHEN

rMinValue:=arrInputBuffer[i].
END_IF

END_FOR.
rAvgValue:=rSumValue/32.
Use the FOR...DO statement to scan all input channels and calculate the average, maximum and

minimum values, in addition to calculating the sum.

3.9 String commands

3.9.1Basic Instructions
String handling functions, as shown below So, a new project will automatically install the Standard library.

99

 CONCAT[FUN]
Concatenate two strings
1) Command format
Instruction Name FB/FUN Graphical representation ST Performance
CONCAT String*

concate
nation

FUN Out:=concat(ST
R1,STR2)

2) Variables
Scope Name Type Comment

Return CONCAT STRING(255)
Serial string, up to 255 characters. If the result does not fit
this 255 bytes, it will be truncated by default. No error is
generated.

Input
STR1 STRING(255) String 1 to be concatenated, maximum 255 characters
STR2 STRING(255) String 2 to be concatenated, maximum 255 characters

3) Examples
Concatenate two strings
Concatenate (STR1, STR2) means: concatenate STR1 and STR2 to a single string STR1STR2.
(*Exampledeclaration*)VARSTRING1:STRING.
(*ExampleinST,resultis'SUSIWILLI'*)VARSTRING1:=CONCAT('SUSI','WILLI').
 DELETE[FUN]
Remove multiple characters from a string
1) Command format
Instructio

n
Name FB/FUN Graphical representation ST Performance

DELETE String *
Delete

FUN Out:=DELETE(
STR,LEN,POS.

2) Variables
Scope Name Type Comment
Return DELETE STRING(255) The remaining string after deletion

Input

STR STRING(255) The string to be modified

LEN INT Length of the part of the string to be deleted, number of
characters

POS INT position in STR, after which the deletion starts. Counting from
the left, starting from 1

3) Example
Deleting multiple characters from a string Delete (STR, LEN, POS) means remove the LEN characters

from STR and start with the character in the POS position. POS=0 or POS=1, both resolve the first character.
Caution:
Unfortunately, the current implementation is incorrect for case Pos=0. Due to compatibility reasons, it is

not possible to change the implementation.
If Pos=0 is used, the parameter LEN will be reduced by one parameter internally!
It is usually recommended to use values within the range specified in IEC 61131-3. the minimum value of

Pos is specified as 1.

(*Exampledeclaration*)VARSTRING1:STRING.
(*ExampleinST,resultis'SUSI'*)VARSTRING1:=DELETE('SUXYSI',2,3).

100

 FIND [FUN]
Search for the position of a partial string in a string.
1) Command format
Instruction Name FB/FUN Graphical representation ST

Performance
FIND String*

Search
FUN Out:=FIND(ST

R1,STR2).

2) Variables
Scope Name Type Comment

Return FIND INT The position of the character where STR2 first occurred in STR1.
If no occurrence is found, the result is 0

Input STR1 STRING(255) Search for STR2 strings
STR2 STRING(255) String whose position is searched in STR1

3) Example
Search for the position of a partial string in a string.
FIND (STR1, STR2) means: Find the position of the first character in STR1 where STR2 first appears. If

STR2 is not found in STR1, it is: = 0.

(*Exampledeclaration*)arINT1:INT.
(*ExampleinST,resultis'4'*)arINT1:=FIND('abcdef','de').

 INSERT [FUN]
Insert a string into another string at a specific location
1) Command format
Instruction Name FB/FUN Graphical representation ST Performance
INSERT String*

insertion
FUN Out:=DELETE(

STR1,STR2,PO
S).

2) Variables
Scope Name Type Comment
Return INSERT STRING(255) Return string

Input

STR1 STRING(255) Insert the string of STR2
STR2 STRING(255) The string will be inserted into STR1

POS INT

Insert position. If POS is 255 or <0>, the result is equal to
STR1
0: insert before the first character
1: Insert after the first character.

3) Example
Insert a string into another string at a specific location
Insertion (STR1, STR2, POS) means: insert STR2 into STR1 after position POS.

(*Exampledeclaration*)
VarSTRING1:STRING.
(*ExampleinST,resultis'SUXYSI'*)
VarSTRING1:=INSERT('SUSI','XY',2).
 LEFT [FUN]
Returns the number of specific characters in the string starting from the left
1) Command format
Instructio Name FB/FUN Graphical representation ST

101

n Performance
LEFT String* left

returns the
number of
specific
characters

FUN Out:=LEFT(ST
R,SIZE).

2) Variables
Scope Name Type Comment

Return LEFT STRING(255) Generated string

Input STR STRING(255) String to be analyzed
SIZE INT Number of characters

3) Example
Returns the number of specific characters in the string starting from the left
Left side (STR, size) means: return the first size character from the left side in the string STR
VarSTRING1:STRING.
(*ExampleinST,resultis'SUS'*)
VarSTRING1:=LEFT('SUSI',3).

 LEN [FUN]
Returns the number of characters in the string
1) Command format
Instr
uctio
n

Name FB/FUN Graphical representation ST Performance

LEN String*Number of
strings

FUN Out:=LEN(STR)
.

2) Variables
Scope Name Type Comment

Return LEN INT Length of string STR
Input STR STRING(255) String to be analyzed
3) Example
Returns the number of characters in the string
(*Exampledeclaration*)
VarINT1:INT.
(*ExampleinST,resultis'4*)
VarINT1:=LEN('SUSI').
 MID [FUN]
Returns the number of characters in a string from a specific position
1) Command format
Instructio

n
Name FB/FUN Graphical representation ST

Performance
MID String*

returns a
specific string
at a specific
position

FUN Out:=MID(STR,
LEN,POS).

2) Variables
Scope Name Type Comment

Return MID STRING(255) Partial string STR

Input
STR STRING(255) String to be analyzed
LEN INT Number of characters, counting from the left
POS INT Partial string start position

102

3) Example
Returns the number of characters in a string from a specific position
MID (STR, LEN, POS) means: retrieve the LEN character from the STR string, starting with the character

at position POS.
(*Exampledeclaration*)
VarSTRING1:STRING.
(*ExampleinST,resultis'US'*)
VarSTRING1:=MID('SUSI',2,2).

 REPLACE [FUN]
Replace a specific number of characters of a string with another string
1) Command format
Instruction Name FB/FUN Graphical representation ST

Performance
REPLACE String*

replaces a
specific
number of
strings

FUN Out:=replace(
STR1,STR2,
L, P).

2) Variables
Scope Name Type Comment
Return REPLACE STRING(255) Generated string

Input

STR1 STRING(255) Replace a partial string
STR2 STRING(255) Replace the STR1 part of the string
L INT Number of characters, counting from left

P INT The start position of the character to be replaced. p=1 or p=0
both resolve the first character

3) Example
Replace a specific number of characters of a string with another string
Replace (STR1, STR2, L, P) means: replace the L character in STR1 with STR2, starting from the

character in position P.

POS=0 or POS=1, both resolve the first character.

(*Exampledeclaration*)
VarSTRING1:STRING.
(*ExampleinST,resultis'SKYSI'*)
VarSTRING1:=REPLACE('SUXYSI','K',2,2).
 RIGHT[FUN]
Returns the number of specific characters in the string starting from the right
1) Command format
Instructio

n
Name FB/FUN Graphical representation ST

Performance
RIGHT The right side of

the string *
returns a
specific number
of characters

FUN Out:=right(ST
R1,SISE).

2) Variables
Scope Name Type Comment

Return RIGHT STRING(255) Generated string

Input STR STRING(255) String to be analyzed
SIZE INT Number of strings

3) Example
Returns the number of specific characters in the string starting from the right

103

Right side (STR, size) means: return the first size character from the right side in the string STR
(*Exampledeclaration*)

VarSTRING1:STRING.
(*ExampleinST,resultis'USI'*)

VarSTRING1:=RIGHT('SUSI',3).

3.9.2Expansion Instructions
String handling functions, as shown below so, you need to add this library manually.

3.9.2.1 Converted String Instructions

 ByteToHexString [FUN]
byte to hexadecimal string
1) Instructions
Instruction Name Graphical representation ST Performance
ByteToHex
String

byte to
hexadecimal
string

Out:=ByteToHexStr
ing(in)

2) Variables
Scope Name Type

Return ByteToHexString STRING(3)
Input in BYTE
3) Example.
 HexToByte [FUN]
Convert hexadecimal string to byte value
1) Instructions
Instruction Name Graphical representation ST Performance
ByteToByte Hexadecimal string

to byte
Out:=HexToByte
(in)

1

Guangzhou Auctech Automation Technology Ltd
K_Utils
1.0.2.2
AuctechlUtil
K_Utils
Ydd,skx,mxh

K-BasicMotion,1.0.2.4(Guangzhou Auctech Automation Technology Ltd)

K-SignalProcess,1.0.1.1(Guangzhou Auctech Automation Technology Ltd)

K-SDO,1.0.3.0(Guangzhou Auctech Automation Technology Ltd)

K-Retain,1.3.4.0(Guangzhou Auctech Automation Technology Ltd)

K-Recipe,1.2.1.1(Guangzhou Auctech Automation Technology Ltd)

K-ModbusTCP,2.0.1.0(Guangzhou Auctech Automation Technology Ltd)

K-ModbusRTU,2.0.1.0(Guangzhou Auctech Automation Technology Ltd)

K-Math,1.0.0.9(Guangzhou Auctech Automation Technology Ltd)

K-LicenseManager,3.0.0.8(Guangzhou Auctech Automation Technology Ltd)

K-IniHelper,1.0.0.0(Guangzhou Auctech Automation Technology Ltd)

K-File,1.0.2.2(Guangzhou Auctech Automation Technology Ltd)

K-CsvHelper,1.0.0.0(Guangzhou Auctech Automation Technology Ltd)

K-Basic,1.0.0.0(Guangzhou Auctech Automation Technology Ltd)

K-Utils,1.0.2.2(Guangzhou Auctech Automation Technology Ltd)

2

104

2) Variables
Scope Name Type

Return HexToByte BYTE
Input HEX STRING(5)
3) Example
 HexToDword [FUN]
Hexadecimal string to Dword value
1) Instructions
Instruction Name Graphical representation ST Performance

ByteToDword byte to Dword Out:=ByteToByt
e(in)

2) Variables
Scope Name Type

Return HexToDword DWORD
Input Hex STRING(20)
3) Example
 IsHex [FUN]
Byte to hexadecimal string conversion
1) Instructions
Instruction Name Graphical representation ST Performance

IsHex byte to hex string
conversion

Out:=IsHex(in)

2) Variables
Scope Name Type

Return IsHex BOOL
Input IN BYTE
3) Example
 Split [FUN]
Split a string by a character, use a string(255) array to receive the split string related instructions
1) Instructions
Instructio

n
Name Graphical representation ST Performance

Split Split
String

split(src:=,pdest:,
separator:=,idest
Size:=,num=>)

2) Variables
Scope Name Type Document
Return IsHex BOOL

Input

Src BYTE The string to be split

Pdest Pointertostring(255)
The first address of the array that
receives the string (the address
of buf)

Separator string Specify the split character

IdestSize int The length of the array receiving
the string

105

Scope Name Type Document

Output Num int Number of strings after splitting
split bool

3) Example
(*declaration*)VAR
STR:STRING(255):='1.2.3.4.5.6.7.8.9.10.11.12'.
dst:ARRAY[0..12]OFSTRING(255);END_VAR
(*execution*)STR:='1.2.3.4.5.6.7.8.9.10.11.12';split(src:=STR,pdest:=ADR(dst[0]),separator:='.'

,idestSize:=12,num=>).

 StringToWS [FUN]
Use the specified character to split the string, not splitting returns ''
1) Instructions
Instruction Name Graphical representation ST Performance

StringToWS Split String StringToWS(str).

2) Variables
Scope Name Type

Return StringToWS WSTRING
Input str STRING
3) Example
Use the specified character to split the string, not splitting returns ''
(*declaration*)VAR
STR:STRING(255):='1.2.3.4.5.6.7.8.9.10.11.12'.
index:INT.
STR2:STRING(255):='';END_VAR
(*execution*)index:=0;whileSTR2<>''do//Calltosplitonecharacteratatime
STR2:=strtok(src:=STR,delim:='.') .
index:=index+1.

//Theresultisasfollows
//indexSTR2STR
//0'1''2.3.4.5.6.7.8.9.10.11.12'
//1'2''3.4.5.6.7.8.9.10.11.12'
//2'3''4.5.6.7.8.9.10.11.12'
//...
//...
//...
//...
//...
//10'11''12'
//11'12'''END_WHILE
 Trim [FUN]
Removes the beginning and end of the string or other characters. The function executes successfully and

returns the string with the first part of the string removed and the
Trailing string
1) Instructions
Instruction Name Graphical representation ST

Performance
Trim Remove the beginning

and end of the string or
other characters

Trim(str).

106

2) Variables
Scope Name Type Comment
Return Trim STRING(255)
Input str STRING(255) Delete from the beginning and end of a string
3) Example
Removes the beginning and end of the string or other characters. When the function succeeds, it returns

the string with the first and last part of the string removed
(*declaration*)VAR
STR:STRING(255):='test1.2.3.4.5.trim'.
STR2:STRING(255):='test21.2.3.4.5.trim2';END_VAR
(*execution*)STR:=Trim(STR);//'test1.2.3.4.5.trim'---------

>'test1.2.3.4.5.trim'STR2:=Trim(STR2);//'test21.2.3.4.5.trim2'------ --->'test21.2.3.4.5.trim2'

3.9.2.2 Pointer-type String Instructions

 Concat_p [FUN]
String Splicing Function
1) Instructions
Instruction Name Graphical representation ST Performance

Concat_p String Splicing Concat_p
(pto:=,toSize:=,pFrom)
.

2) Variables
Scope Name Type Comment

Return Concat_p DINT Returns the number of splices, -1 means the number of
characters is overflowing

Input
pTo POINTERTOBYTE To stitch the target string pointer address
ToSize DINT Target string size, number of bytes
pFrom POINTERTOBYTE Splice source string pointer address

3) Example
(*declaration*)VAR
To:STRING(1000).
From:STRING(255):='Helloworld'.
index:int;END_VAR
(*execution*)index:=0;to:='';WHILEConcat_p(adr(to),sizeof(to),adr(From))<>-1do
index:=index+1.

//indexTo
//1'Helloworld'
//2'HelloworldHelloworld'
//...
//...
//...
//n'HelloworldHelloworld'
//Knowthatthereturnvalueis-1END_WHILE

 Delete_p [FUN]
Delete characters of the specified length from a string
1) Instructions
Instruction Name Graphical representation ST Performance

107

Delete_p Delete
String

Delete_p
(pSrc:=,SrcSize:=,LEN:=
, Pos:=).

2) Variables
Scope Name Type Comment
Return Delete_p DINT

Input

pTo POINTERTOBYTE Source string address
SrcSize DINT Source string size, byte count
Len DINT Delete string length
Pos DINT Delete the starting position of the string, starting from 1

3) Example
(*declaration*)VAR
str:STRING:='12345678910';END_VAR
(*execution*)Delete_p(adr(str),sizeof(str),3,6);//str='12345610'

 Find_p[FUN]
Find the string from the source string and return the position
1) Instructions
Instruction Name Graphical representation ST Performance

Find_p Find String Find_p
(pSrc:=,SrcSize:
=,Str:=).

2) Variables
Scope Name Type Comment

Return Find_p DINT

Input
pSrc POINTERTOBYTE Source string address
SrcSize DINT Source string size, byte count
Str STRING(255)

3) Example
Find the string from the source string and return the position
(*declaration*)VAR
str:STRING:='12345678910'.
iFindIndex:dint;END_VAR
(*execution*)iFindIndex:=Find_p(adr(str),sizeof(str),'6');//iFindIndex=6
 IsSpace_p [FUN]
Determine if the input character is a /carriage return/tab, etc.
1) Instructions
Instruction Name Graphical representation ST Performance

IsSpace_p Determine the input
string

IsSpace_p
(str:=).

2) Variables
Scope Name Type Comment

Return IsSpace_p BOOL

108

Scope Name Type Comment
Input Str BYTE Single character
3) Example
(*declaration*)VAR
bspace:byte:=32;//''
btab:byte:=9;//\t.
bnewline:byte:=10;//\n
breturn:byte:=13;//\r.
bA:byte:=65;//A.
bYes:bool;END_VAR
(*execution*)
ifIsSpace_p(bspace)then
bYes:=TRUE;end_if
ifIsSpace_p(bnewline)then
bYes:=TRUE;end_if
ifIsSpace_p(btab)then
bYes:=TRUE;end_if
ifIsSpace_p(breturn)then
bYes:=TRUE;end_if
ifIsSpace_p(bA)then
bYes:=TRUE;ELSE
bYes:=FALSE;end_if
 Left_p [FUN]
Fetch the specified number of characters from the left side of the string to the target string, starting from

the first character
1) Instructions
Instruction Name Graphical representation ST Performance

Left_p Take out the
string on the
left

Left_p
(pSrc:=, the
SrcSize: =, the
pDest:=.
DestSize:=Count:=).

2) Variables
Scope Name Type Comment
Return Left_p DINT Return -1 means the number of characters overflowed

Input

pSrc POINTERTOBYTE Source string address
SrcSize DINT Source string size, byte count
pDest POINTERTOBYTE Destination Address
DestSize DINT Target string size
Count DINT Number of bytes fetched

3) Example
(*declaration*)VAR
Src:STRING:='123456789'.
Dest:string;END_VAR
(*execution*)
Left_p(ADR(Src),sizeof(Src),adr(Dest),sizeof(Dest),3);//Dest='123'
 Len_p [FUN]
Find the length of the string
1) Instructions
Instructio

n
Name Graphical representation ST Performance

109

Len_p String
length

Len_p
(pStr:=).

2) Variables
Scope Name Type Comment

Return LEN_p DINT
Input pStr POINTERTOBYTE String address
3) Example
(*declaration*)VAR
Str:STRING:='123456789'.
iLen:dint;END_VAR
(*execution*)
iLen:=Len_p(ADR(Str));//iLen=9
 Mid_p [FUN]
Retrieve the specified number of characters from the source string at the specified position to the target

string
1) Instructions
Instructio

n
Name Graphical representation ST Performance

Mid_p Fetch a
specific string

Len_p
(pStr:=).

2) Variables
Scope Name Type Comment
Return Mid_p DINT Return -1 means the number of characters overflowed

Input

pSrc POINTERTOBYTE Source string address
SrcSize DINT Source string size, byte count
pDest POINTERTOBYTE Destination Address
DestSize DINT Target string size
Position DINT StartpositionFORtheparttialSTRING
Length DINT NumberOFcharacters,countedFROMtheleft

3) Example
(*declaration*)VAR
Src:STRING:='123456789'.
Dest:STRING;END_VAR
(*execution*)
Mid_p(ADR(Src),sizeof(Src),adr(Dest),sizeof(Dest),5,2);//Dest='67'
 Right_p [FUN]
Retrieve the specified number of characters from the right side of the source string to the target string
1) Instructions
Instruction Name Graphical representation ST Performance

110

|Right_p Take out
the string
on the
right side

Right_p
(pSrc:=, the
SrcSize: =, the
pDest:=.
DestSize:=Count:=)
.

2) Variables
Scope Name Type Comment
Return Right_p DINT Return -1 means the number of characters overflowed

Input

pSrc POINTERTOBYTE Source string address

SrcSize DINT Source string size, byte count
pDest POINTERTOBYTE Destination Address
DestSize DINT Target string size
Count DINT Number of bytes fetched

3) Example
(*declaration*)VAR
Src:STRING:='123456789'.
Dest:string;END_VAR
(*execution*)
Right_p(ADR(Src),sizeof(Src),adr(Dest),sizeof(Dest),3);//Dest='789'
 ToLower_p [FUN]
Convert English characters in a string to lowercase
1) Instructions
Instruction Name Graphical representation ST Performance

ToLower_p String to
lowercase

ToLower_p
(pStr:=,).

2) Variables
Scope Name Type Comment

Return ToLower_p DINT
Input pStr POINTERTOBYTE String address
3) Example
(*declaration*)VAR
Str:STRING:='GuangDongQ&CIntelligentTechnologyCo,Ltd';END_VAR
(*execution*)
ToLower_p(ADR(Str));//Str='guangdongq&cintelligenttechnologyco,ltd'
 ToUpper_p[FUN]
Convert English characters in a string to uppercase
1) Instructions
Instruction Name Graphical representation ST Performance

ToUpper_p String to
uppercase

ToUpper_p
(pStr:=,).

2) Variables
Scope Name Type Comment

Return ToUpper_p INT
Input pStr POINTERTOBYTE String address

111

3) Example
(*declaration*)VAR
Str:STRING:='GuangDongQ&CIntelligentTechnologyCo,Ltd';END_VAR
(*execution*)
ToLower_p(ADR(Str));//Str='GUANGDONGQ&CINTELLIGENTTECHNOLOGYCO,LTD'

 Trim_p [FUN]
Whitespace characters are removed from both ends of a string. The whitespace characters in this context

are all whitespace characters (space, tab, no-breakspace, etc.) and all line terminator characters (e.g. LF, CR,
etc.)

1) Instructions
Instruction Name Graphical representation ST Performance

Trim_p Delete
whitespace
characters from
both ends of a
string

Trim_p
(Str:=,).

2) Variables
Scope Name Type Comment

Return ToUpper_p INT
Input Str POINTERTOBYTE String address
3) Example
(*declaration*)VAR
STR:STRING(255):='test1.2.3.4.5.trim'.
STR2:STRING(255):='test21.2.3.4.5.trim2';END_VAR
(*execution*)Trim_p(ADR(STR));//'test1.2.3.4.5.trim'---------

>'test1.2.3.4.5.trim'Trim_p(ADR(STR2));//'test21.2.3.4.5.trim2'--- ------>'test21.2.3.4.5.trim2'

3.10 Time/Moment command

3.10.1 Library Manager

112

 GetCycleTimeMS(FUN)
Get the current task period, in ms (million second)
1) Instructions

Instruction Name Graphical representation ST Performance

GetCycleTimeMS Get the current
task period in ms

GetCycleTimeMS()
.

2) Variables
Scope Name Type Comment

Return GetCycleTimeMS REAL
3) Example

 GetCycleTimeS(FUN)
Get the current task period, in s (second)
1) Instructions
Instruction Name Graphical representation ST Performance

GetCycle
TimeS

Get the current
task period in s

GetCycleTimeS(
).

2) Variables
Scope Name Type Comment

Return GetCycleTimeS REAL
3) Example
 GetTimeDT(FUN)
Get the local time for the time data type
1) Instructions
Instruction Name Graphical representation ST

Performance
GetTimeDT Get the local

time for the time
data type

GetTimeDT().

2) Related instructions
Scope Name Type Comment

Return GetTimeDT DATE_AND_TIME
3) Example
 GetTimeS(FUN)
Get the local time of the string type
1) Instructions
Instruction Name Graphical representation ST Performance

GetTimeS Get the local time of the
string type

GetTimeS().

113

3.11 File manipulation commands

3.11.1 Library Manager

 CopyFile [FUN]
Copy the file to the specified file path
1) Instructions
Instruction Name Graphical representation ST Performance

CopyFile Copy
files

CopyFile(sDestF
ileName:=,sSour
ceFileName:=,p
ulCopied:=).

2) Variables
Scope Name Type Comment
Return CopyFile SysFile.RTS_IEC_RESULT

Input sDestFileName STRING(255)
Destination file path name, the file
name can contain an absolute or
relative path to the file. Path entries

K-Basic, 1.0.0.0 (Guangzhou Auctech Automation Technology Ltd)

K-File, 1.0.2.2 (Guangzhou Auctech Automation Technology Ltd)

K-IniHelper, 1.0.0.0 (Guangzhou Auctech Automation Technology Ltd)

K-LicenseManager, 3.0.0.8 (Guangzhou Auctech Automation Technology Ltd)

K-Math, 1.0.0.9 (Guangzhou Auctech Automation Technology Ltd)

K-ModbusRTU, 2.0.1.0 (Guangzhou Auctech Automation Technology Ltd)

K-ModbusTCP, 2.0.1.0 (Guangzhou Auctech Automation Technology Ltd)

K-Recipe, 1.2.1.1 (Guangzhou Auctech Automation Technology Ltd)

K-Retain, 1.3.4.0 (Guangzhou Auctech Automation Technology Ltd)

K-SDO, 1.0.3.0 (Guangzhou Auctech Automation Technology Ltd)

K-SignalProcess, 1.0.1.1 (Guangzhou Auctech Automation Technology Ltd)

K-Utils, 1.0.2.2 (Guangzhou Auctech Automation Technology Ltd)

K-Basic, 1.0.0.0 (Guangzhou Auctech Automation Technology Ltd)

K-BasicMotion, 1.0.2.4 (Guangzhou Auctech Automation Technology Ltd)

K-CsvHelper, 1.0.0.0 (Guangzhou Auctech Automation Technology Ltd)

114

Scope Name Type Comment
must be slash (/) separated, not
backslash (\) separated!

sSourceFileName STRING(255)

The source file path name, the file
name can contain the absolute or
relative path to the file. Path entries
must be slash (/) separated, not
backslash (\) separated!

pulCopied POTNTERTO_XWORD Returns the number of bytes copied
3) Example
 CreateFile [FUN]
Create file
1) Instructions
Instruction Name Graphical representation ST Performance

CreateFile Create
file

CreateFile(sFileNa
me:=).

2) Variables
Scope Name Type Comment
Return CreateFile SysFile.RTS_IEC_RESULT

Input sFileName STRING(255)
File names can contain absolute or relative
paths to files. Path entries must be slash (/)
separated, not backslash (\) separated!

3) Example
 DeleteFile [FUN]
Delete files
1) Instructions
Instruction Name Graphical representation ST Performance

DeleteFile Delete
files

DeleteFile(sFileNam
e:=).

2) Variables
Scope Name Type Comment
Return CreateFile SysFile.RTS_IEC_RESULT

Input sFileName STRING(255)
File names can contain absolute or relative
paths to files. Path entries must be slash (/)
separated, not backslash (\) separated!

3) Example
 GetFileList [FUN]
Get file list (return file name only) function return value for the number of valid files obtained
1) Instructions
Instruction Name Graphical representation ST Performance

GetFileList Get the
text list

GetFileList(sPath:=,pList:=,p
ListFullName:=,ListSize:=,sS
uffixName:=).

2) Variables
Scope Name Type Comment

115

Scope Name Type Comment
Return GetFileList UINT

Input

sPath STRING(255) File paths, which can contain absolute or
relative paths to files

pList POINTERTOSTRING(8
0) File name list address

pListFullName POINTERTOSTRING(8
0) Full name list address of the file

ListSize _XWORD File name list byte size
sSuffixName STRING Suffix name with ',', e.g. '.txt', case-insensitive

3) Example
 GetFileList2 [FUN]
The return value of the Get File List (with file information) function is the number of valid files obtained
1) Instructions
Instruction Name Graphical representation ST Performance

Get
FileList2

Get the
text list

GetFileList2(sPath:=
,pList:=,Size:=,sSuffi
xName:=).

2) Variables
Scope Name Type Comment
Return GetFileList UINT

Input

sPath STRING File paths, which can contain absolute or relative
paths to files

pList POINTERTOTFileInfo File name list address
Size _XWORD File name list byte size
sSuffixName STRING Suffix name with ',', e.g. '.txt', case-insensitive

3) Example
 HasFile [FUN]
Check if the file exists
1) Instructions
Instruction Name Graphical representation ST Performance

HasFile Check if the
file exists

HasFile(sFileName:=).

2) Variables
Scope Name Type Comment
Return HasFile BOOL

Input sFileName STRING(255)
The file name, which can contain the absolute or relative
path to the file. Path entries must be split by a slash (/)
and not separated by a backslash (\).

3) Example
 ReadFile [FUN]
Read file function returns the number of bytes read from the file Note: If the read is Chinese characters

need to use the following function to convert
1) Instructions
Instructio

n
Name Graphical representation ST Performance

116

ReadFile Read files ReadFile(sFileNa
me:=,).

2) Variables
Scope Name Type Comment
Return sFileName _XWORD

Input sFileName STRING(25
5)

The file name, which can contain the absolute or relative
path to the file. Path entries must be split by a slash (/) and
not separated by a backslash (\).

3) Example
 ReadFileS [FUN]
Read a line of data from a file, the return value is the number of bytes read
1) Instructions
Instructio

n
Name Graphical representation ST Performance

ReadFile
S

Reads a line
of data from
a file.

ReadFileS(str:=,s
FileName:=,
bResetRead:=).

2) Variables
Scope Name Type Comment
Return ReadFileS _XWORD
In_Out str STRING(1000) Read up buffer

Input sFileName STRING(255)
The file name, which can contain the absolute or
relative path to the file. Path entries must be split by a
slash (/) and not separated by a backslash (\).

bResetRead BOOL Reset
3) Example
 ReadFileWS [FUN]
Read a line of data from a file, the return value is the number of bytes read
1) Instructions
Instruction Name Graphical representation ST Performance

ReadFileW
S

Reads a line
of data from
a file.

ReadFileWS(wstr:=,sF
ileName:=,bResetRea
d:=).

2) Variables
Scope Name Type Comment
Return ReadFileWS _XWORD
In_Out wstr WSTRING(1000) Read up buffer

Input sFileName STRING(255)
The file name, which can contain the absolute or
relative path to the file. Path entries must be split
by a slash (/) and not separated by a backslash (\).

bResetRead BOOL Reset
3) Example
 WriteFile [FUN]
Write data to file
1) Instructions
Instructio

n
Name Graphical representation ST Performance

117

WriteFile Write
data to
file

WriteFile(sFileName:=
,pbyBuffer:=, ulSize:=,
WriteMode:=).

2) Variables
Scope Name Type Comment
Return WriteFile _XWORD

Input

sFileName STRING(255)
The file name, which can contain the absolute or relative
path to the file. Path entries must be split by a slash (/)
and not separated by a backslash (\).

pbyBuffer _XWORD Address where the data is located, use ADR() to take
the address

ulSize UDINT Data length, number of bytes or string length
WriteMode EWriteMode Write mode

3.12 EtherCAT Communication Commands

3.12.1 Read SDO parameter ETC_CO_SdoReadDword(FB)
1) Command format

Instruction Name Graphical representation ST Performance

ETC_CO_
SdoReadDword

Read SDO
parameters

ETC_CO_SdoReadDword(x
Execute:=,xAbort:=,usiCom:
=,
uiDevice:=.
usiChannel:=.
wIndex:=.
bySubindex:=.
udiTimeOut:=).

2) Variables
a. Input

Name Data Type Description
xExecute BOOL Rising edge: start reading slave parameters.

To release the internal channel again later, the instance must be
called at least once by xExecute: = FALSE.

xAbort BOOL TRUE: the current read process is aborted.
usiCom USINT EtherCAT master number: If only one EtherCAT master is used,

usiCom is always 1. If multiple masters are used, 1 specifies the
first one, 2 the second one and so on.

uiDevice UInt The physical address of the slave.
If the auto-configuration mode is de-activated in the master, it is
possible to provide the slave with its own address. This address
must be specified here.
The current slave address can be checked in the Slave dialog in
the Device Editor of the EtherCAT Address Area.

usiChannel USINT Reserved for future expansion
wIndex WORD Index of the parameters in the object directory.
bySubindex BYTE Subindex of parameters in the object directory.
udiTimeOut UDINT Definition of watchdog time, in milliseconds.

If the reading of the parameter has not been completed by the time
this time expires, an error message is output.

pBuffer CAA_PVOID Pointer to the data buffer, which stores data after successful
transfer of parameters

118

Name Data Type Description
szSize CAA_SIZE The size of the data buffer (pBuffer), in bytes.
b. Output

Name Data Type Description
xDone BOOL TRUE: no error in reading the completion

parameters.
xBusy BOOL TRUE: reading is not complete.
xError BOOL TRUE: an error occurred during reading.
eError ETC_CO_ERROR Information about the cause of the error displayed

by xError, such as ETC_CO_TIMEOUT on timeout
udiSdoAbort UDINT If an error occurs in the device, this output will

provide more information about it.
szDataRead CAA_SIZE Number of bytes to read; max szSize(input).
c. ENUMETC_CO_ERROR
ETC_CO_NO_ERROR 0 No errors
ETC_CO_FIRST_ERROR 5750 The cause of the error is stored in the output

udiSdoAbort
ETC_CO_OTHER_ERROR 5751 Can't find the main site
ETC_CO_DATA_OVERFLOW 5752 ETC_CO_Expedited and size > 4
ETC_CO_TIME_OUT 5753 Exceeding the time limit
ETC_CO_FIRST_MF 5770 Not used
ETC_CO_LAST_ERROR 5799 Not used
3) Example
fb_SdoRead :ARRAY[1..PARAM_NUMS]OFETC_CO_SdoReadDWord;//Sdo read module

// Program section
fb_SdoRead[i](

xExecute:=SdoParam[i].bRead,//trigger signal
xAbort:=,//Module interrupt signal, no input, default is false
usiCom :=1,//number of devices 1

uiDevice := uiDevice,// the first driver of the slave module address is 1001, the second
1002, and so on

usiChannel :=,//Channel without input
wIndex :=SdoParam[i].wIndex,//index address, such as 16#603FErrorCode
bySubindex :=SdoParam[i].bySubindex,//wordindex
udiTimeOut :=5000000,//timeout time, unit us
xDone =>.
xBusy=>.
xError=>.
eError=>.
udiSdoAbort=>.
dwData =>SdoParam[i].wActValue,//the output value, dword type
usiDataLength=>);4.12.2 Write SDO parameters ETC_CO_SdoWriteDword(FB)

4) Command format
Instruction Name Graphical representation ST Performance

ETC_CO_
SdoWriteDword

Write SDO
parameters

ETC_CO_SdoWriteDword(
xExecute:=.
xAbort:=, the
usiCom:=, the
uiDevice:=.
usiChannel:=.
wIndex:=.
bySubindex:=.
udiTimeOut:=.
dwData:=.
usiDataLength:=).

119

5) Variables
a. Input

Name Data
Type

Description

xExecute BOOL Rising edge: Start reading slave parameters.
To release the internal channel again later, the instance must be
called at least once by xExecute: = FALSE.

xAbort BOOL TRUE: the current writing process is aborted.
usiCom USINT EtherCAT master number: If only one EtherCAT master is used,

usiCom is always 1. If multiple masters are used, "1" means the first
one, "2" means the second one, and so on.

uiDevice UInt The physical address of the slave.
If the auto-configuration mode is de-activated in the master, it is
possible to provide the slave with its own address. This address
must be specified here
If the auto-configuration mode is activated, the first slave address is
always 1001. The current slave address is always located in the
Slave tab of the slave in the EtherCAT address area.

usiChannel USINT Reserved for future expansion
wIndex WORD Index of the parameters in the object directory.
bySubindex Bytes Subindex of parameters in the object directory.
udiTimeOut UDINT Definition of monitoring time, in milliseconds.

If the writing of the parameter has not been completed by the time
this time expires, an error message is output.

dwData dword Contains the data to be written.
usiDataLength USINT The number of bytes to be written (1,2,4).
b. Output

Name Data Type Description
xDone BOOL TRUE: the writing of the parameter is complete and there are

no errors.
xBusy BOOL TRUE: writing is not yet complete.
xError BOOL TRUE: an error occurred during writing.
eError ETC_CO_

ERROR
Information about the cause of the error displayed by xError,
such as ETC_CO_TIMEOUT on timeout.

udiSdoAbort UDINT If an error occurs in the device, this output will provide more
information about it

c. ENUMETC_CO_MODE
AUTO 0 Automatic client selection mode
EXPEDITED 1 Client use acceleration protocol
SEGMENTED 2 Client uses segmentation protocol
6) Example
fb_SdoWrite :ARRAY[1..PARAM_NUMS]OFETC_CO_SdoWriteDWord;//Sdo write module

fb_SdoWrite[i](
xExecute :=SdoParam[i].bWrite,//trigger signal
xAbort:=,//Module interrupt signal, no input, default is false
usiCom :=1,//number of devices 1
uiDevice := uiDevice,// the first driver of the slave module address is 1001, the second

1002, and so on
usiChannel:=,//Channel without input
wIndex :=SdoParam[i].wIndex,//index address, such as 16#603FErrorCode
bySubindex :=SdoParam[i].bySubindex,//wordindex
udiTimeOut :=5000000,//timeout time, unit us
dwData :=SdoParam[i].wSetValue.
usiDataLength := 2.
xDone=>.
xBusy=>.

120

xError=>.
eError=>.
udiSdoAbort=>).

3.12.2 Reset Module

3.12.2.1 ETC module communication reset function block MC_ResetETCSlave

3.12.2.2 Axis and drive reset function block MC_ResetDrive

3.12.2.3 EtherCAT bus reset function block MC_ResetMaster

K-Recipe,1.2.1.1 (Guangzhou Auctech Automation Technology Ltd)

K-Retain,1.3.4.0 (Guangzhou Auctech Automation Technology Ltd)

K-SDO,1.0.3.0 (Guangzhou Auctech Automation Technology Ltd)

K-SignalProcess,1.0.1.1 (Guangzhou Auctech Automation Technology Ltd)

K-Utils,1.0.2.2 (Guangzhou Auctech Automation Technology Ltd)

K-ModbusTCP,2.0.1.0 (Guangzhou Auctech Automation Technology Ltd)

K-ModbusRTU,2.0.1.0 (Guangzhou Auctech Automation Technology Ltd)

K-Math,1.0.0.9 (Guangzhou Auctech Automation Technology Ltd)

K-LicenseManager,3.0.0.8 (Guangzhou Auctech Automation Technology Ltd)

K-IniHelper,1.0.0.0 (Guangzhou Auctech Automation Technology Ltd)

K-File,1.0.2.2 (Guangzhou Auctech Automation Technology Ltd)

K-CsvHelper,1.0.0.0 (Guangzhou Auctech Automation Technology Ltd)

K-BasicMotion,1.0.2.4 (Guangzhou Auctech Automation Technology Ltd)

K-Basic,1.0.0.0 (Guangzhou Auctech Automation Technology Ltd)

Guangzhou Auctech Automation Technology Ltd

K_BasicMotion
1.0.2.4
AuctechIMotion
K_BasicMotion
Guangzhou Auctech Automation Technology Ltd

K_BasicMotion,1.0.2.4(Guangzhou Auctech Automation Technology Ltd)

HMC

AUCTECH AUTOMATION

Reversion: V1.4

Hongshi Business Building, SCI-TECH Industry
Park, Baiyun District, Guangzhou city, PRC

Fax Web Mailbox

+86 020 8489 8493 www.auctech.com.cn info@auctech.com.cn

Guangzhou Auctech Automation Technology Ltd

