
HNC PLC User Manual Classic Programmable Logic Controller

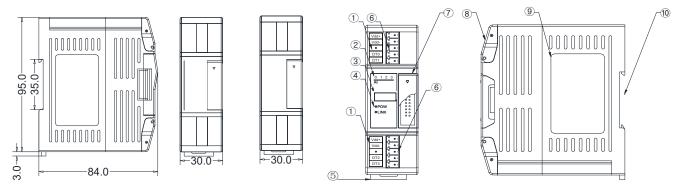
Temperature & Humidity Module User Manual & Application Case

Contents

Te	empe	era	ture	& I	Hun	nidity	N	Nodule	Use	Manua	
	_										

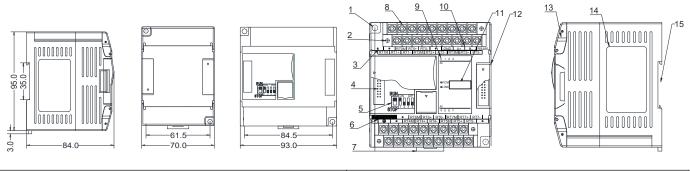
	Product model list and dimension	
2. lı	ndicator description	4
	Power supply specification	
4. E	nvironmental specifications for product	4
5. N	lain parameters for modules	5
	5.1 Main parameters for digital temperature and humidity modules	5
	5.2 Main parameters for thermal resistance and thermocouple modules	5
6. V	Viring diagram	5
	6.1 Digital temperature and humidity module: Single / multiple DS18B20, RW1820, DS1990 sensor input wiring diagram.	5
	6.2 Thermal resistance and thermocouple module wiring diagram	
7. T	erminal wiring diagram	6
	Nodule parameter table (CR code is corresponding to the Modbus register address)	
	8.1 Parameter table for digital temperature and humidity modules	6
	8.2 Parameter table for 4-channel thermal resistance and thermocouple modules	7
	8.3 Parameter table for 8-channel thermal resistance and thermocouple modules	8
9. E	xpansion modules installation	9

Temperature & Humidity modules Application Case


1. Module	used as remote IO 1
1.1	Module power supply1
1.2	Communication port introduction1
1.3	Communication protocols and default parameters1
1.4	Introduce module parameter configuration method when the module is used as remote IO1
1.5	Parameter configuration example: Configurate module by programming software remote module tool1
1.6	Remote IO appliciation example(RS485): PLC reads 4-channel temperature value of TE-4RC module
1.7	Remote IO appliciation example (Ethernet): PLC reads and writes every channel input values of TE-8RCe module 1
1.8	Remote IO appliciation example: HTCloud Designer configuration communicates directly with TE-8TC module1
1.9	TE-32DT module usage features introduction1
FAQ for T	E-32DT module1

Temperature & Humidity Module Use Manual

1. Product model list and dimension


Ethernet Model	24V DC	Model	24V DC	Dimension
		TE-32DT	0.04A	30×95×82mm
		TE-4TC	0.07A	
		TE-8TC	0.07A	70×95×82mm
		TE-4RC	0.07A	
TE-8RCe	0.1A	TE-8RC	0.07A	93×95×82mm

Dimensions for TE-32DT

1. Terminal definition	6. Pluggable terminal
2. Analog input channel indicator	7. Module expansion port
3. Model	8. Transparent cover of module terminal
4. PWR power indicator, LINK module communication indicator	9. Module nameplate
5. Guide rail buckle	10. 35mm DIN guide rail

Dimensions for TE-4TC, TE-4RC, TE-8TC , TE-8RC

1. Fixed hole	8. Removable terminal
2. Removable terminal screw	9. Analog input channel indicator
3. Terminal definition	10. RS485 communication port
4. Module expansion port	11. PWR power indicator, LINK module communication indicator
5. DIP switch (4-channel module without DIP switch)	12. Module expansion port
6. External power supply terminal (DC24V and AC220V, Generally powered by the host PLC)	13. Transparent cover of module terminal
7. Guide rail buckle	14. Module nameplate
	15. 35mm DIN guide rail

2. Indicator description

2.1 Indicator description of TE-32DT

① PWR: Power indicator, green. Normally on-power normal; off - power abnormal.

2 LINK: Multi-status indicator .three colors(Red. Yellow. Green) ,as follow:

Reference processing mode	Module bus state	LINK indicator state	
	MPU didn't identify the module and no communication	No light	
Normal	MPU has identified the module but no communication	Constant light in green	
	Serial (TE-32DT) or parallel port in communication	Green jitter: indicator on 30ms and off 30ms	
Firmware upgrade failed, reupgrade	Without serial or parallel port in communication	Red flicker: indicator on 0.5s and off 0.5s	
the module firmware	With serial or parallel port in communication	Red is darkened and jitter alternately: indicator off 0.5s and jitter 0.5s	

2.2 Indicator description of TE-4TC, TE-4RC, TE-8TC, TE-8RC

- ① PWR: Power indicator, green. Normally on-power normal; off power abnormal.
- 2 LINK: Multi-status indicator .three colors(Red. Yellow. Green) ,as follow:

Reference processing mode	Module bus state	LINK indicator state	
	No communication of module	No light	
Normal	MPU has identified the module but no communication	Constant light in green	
	Serial or parallel port in communication	Green jitter: indicator on 30ms and off 30ms	
Parallel power supply not enough,	Without serial or parallel port in communication	Yellow flicker: indicator on 0.5s and off 0.5s	
must connect to external power supply	With serial or parallel port in communication	Yellow is darkened and jitter alternately: indicator off 0.5s and jitter 0.5s	
Firmware upgrade failed, reupgrade	Without serial or parallel port in communication	Red flicker: indicator on 0.5s and off 0.5s	
the module firmware	With serial or parallel port in communication	Red is darkened and jitter alternately: indicator off 0.5s and jitter 0.5s	
Hardware failure and maintenance	Without serial or parallel port in communication	Constant light in red	
naruware failure and maintenance	With serial or parallel port in communication	Red jitter quickly: indicator on 30ms and off 30ms	

③ RJ45 Ethernet indicator: there are two Ethernet LEDs, green and yellow, as shown on the right picture:

Color	Status description		
Green light is always on	Physical connection of TCP module and external device is normal;		
Green light goes out	TCP module fails to connect with external device or the module itself is abnormal		
Yellow light blinks	TCP module is connected to an external device normally, and blinking frequency indicates the data transmission speed. When speed is fast, human eye is not easy to distinguish it, at this time, yellow light is long bright.		
Yellow light goes out	No data transmission communication of TCP module and external device		

3. Power supply specification

Item	DC Power Supply	
Power supply voltage	24VDC -15%~+20%	
Power supply frequency		
Instantaneous surge	MAX 20A 1.5ms @24VDC	
Power loss time	10ms or less	
Fuse	0.3A, 250V	
24V Output voltage (for input and expansion)	None	
Isolation Type	No Electrical isolation	
Power Protection	DC input power polarity reverse, over voltage protection	

4. Environmental specifications for product

Item	Environment Specification			
Temperature/humidity	Operating temperature:0~+55°C Storage temperature:-25~+70°C Humidity: 5~95%RH, No condensation			
Vibration resistance	10~57 HZ, amplitude=0.075mm, 57HZ~150HZ acceleration=1G, 10 times each for X-axis, Y-axis and Z-axis			
Impact resistance	15G, duration=11ms, 6 times each for X-axis, Y-axis and Z-axis			
Interference immunity	DC EFT:±2500V Surge:±1000V			
Over voltage resistance	500VAC/1min between DC terminal and PE terminal			
Insulation impedance	Between AC terminal and PE terminal @500VDC,>=5MΩ ,all input/output points to PE terminal @500VDC			
Operating environment	Avoid dust, moisture, corrosion, electric shock and external shocks			

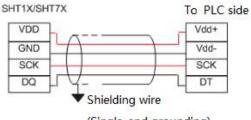
5. Main parameters for modules

5.1 Main parameters for digital temperature and humidity modules

Item	TE-32DT		
Input interface	DS18B20, RW1820, DS1990 sensor		
Input Quantity	2 channels, each channel 16 points		
Communication interface	RS485		
Communication speed	2400~115200 Baud rate		
Communication protocol	Standard Modbus		
Power supply mode	PLC host internal power supply or independent external supply of 24VDC		
Measured distance	≤200m(Wire resistance50Ω)		
Measured range	DS18B20: -55~+125°C		
Isolation mode	No isolation between channels, analog & digital optical isolation		

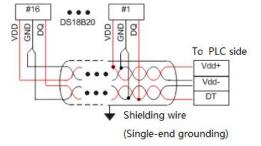
5.2 Main parameters for thermal resistance and thermocouple modules

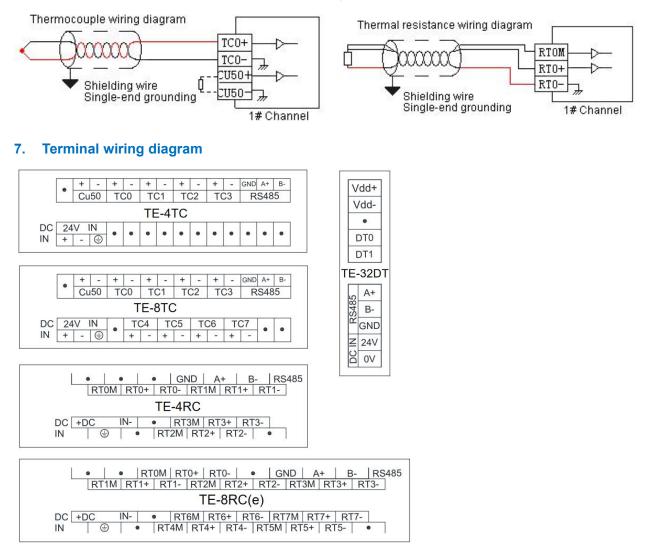
Item	RTD input	Thermocouple input			
Input range	Pt100, Pt1000, Cu50, Cu100	S, K, E, J, B, N, R, Wre3/25, Wre5/26, [0, 20]mV, [0, 50]mV, [0, 100]mV			
Resolution	0.1°C	0.1℃			
Input impedance	6ΜΩ	6ΜΩ			
Maximum input range	±13V	±30mA			
Input indication	LED light ON means normal ,OFF means external disconnection				
Response time	560ms/4 Channel, 880ms/8 Channel				
Digital input range	16 bits, code range:0~32000	16 bits, code range:0~32000			
Precision	0.1% F.S				
Power supply	MPU use internal power supply, expansion	modules use external power supply 24VDC ±10% 5VA			
Isolation mode	Optoelectronic isolation, no isolation betwee	en channels, analog & digital optical isolation			
Power consumption	24VDC ±20%,50mA(maximum)				


6. Wiring diagram

6.1 Digital temperature and humidity module: Single / multiple DS18B20, RW1820, DS1990 sensor input wiring diagram

(Single-end grounding)




(Single-end grounding)

Note:

- 1 VDD (Vdd +) and (Vdd-) are the sensor power terminals that can be wired nearby;
- ② Pin connection definition of DS18B20, RW1820, DS1990, SHT1X, SHT7X sensors can be seen in respective technical information;
- ③ Cables between sensor DS18B20, RW1820, DS1990 and module are recommended to use shielded 4-core twisted pair; one set of cable can be connected to ground (Vdd-) and signal lines (DT), the other set of cable can be connected to power supply and ground (Vdd-), the shield is single-point grounded at the source.

6.2 Thermal resistance and thermocouple module wiring diagram

8. Module parameter table (CR code is corresponding to the Modbus register address)

8.1 Parameter table for digital temperature and humidity modules

Note: CR code is corresponding to the Modbus register address, the gray parts are read-only the white parts are readable and writable.

CR code	H04DT function description	CR code	TE-32DTfunction description			
00H	Low byte for module code, and high byte for module version number					
01H	Communication address					
02H	Communication protocol: The low 4-bit of the low byte: 0 - N,8,2 For RTU, 1 - E,8,1 For RTU, 2 - O,8,1 For RTU, 3 - N,7,2 For ASCII, 4 - E,7,1 For ASCII, 5 - O,7,1 For ASCII, 6 - N,8, 1 For RTU The high 4-bit of the low byte: 0 - 2400, 1 - 4800, 2 - 9600, 3 - 19200, 4 - 38400, 5 - 57600, 6 - 115200					
03H~06H	Module name					
07H~08H	Default IP address: 192.168.1.111					
09~0AH	Reserve					
0BH	High byte subnet mask (b3~b0,1 indicates 255, 0 indicates	0, for example,	subnet mask 255.255.255.0, b3~b0=1110), low byte reserved			
0CH~0EH	Reserve					
0FH	Error code: 0-Normal, 1-Illegal firmware identity, 2-Incom supply	plete firmware,	3-System data access exception, 4-No external 24V power			
10H~13H	Temperature input value of channel 1~4	10H~1FH	Temperature value in 1~16 path of channel 1			
14H~17H	Humidity input value of channel 1~4	20H~2FH	Temperature value in 1~16 path of channel 2			
18H~1BH	Signal type of channel 1~4 (0-DS18B20, RW1820, DS1990, 1-SHT1x, SHT7x)	30H	A/D data bits of channel 1			
1CH	Using identification of engineering value	31H	A/D data bits of channel 2			

1DH~20H	Data lower-limit of channel 1~4	32H	Temperature disconnection alarm in 1~16 path of channel 1, each bit indicates 1 channel, 0- normal, 1- disconnection
21H~24H	24H Data upper-limit of channel 1~4		Temperature disconnection alarm in 1~16 path of channel 2, each bit indicates 1 channel, 0- normal, 1- disconnection
25H~28H	A/D data bit of channel 1~4	34H	Configuration number of channel 1
29H~2CH	Zero point correction of channel 1~4	35H	Configuration number of channel 2
2DH	Sensor disconnection alarm of channel 1~4, each bit indicates 1 channel, 0- normal, 1- disconnection	36~75H	Serial numbers in 1~16 path of channel 1, each serial number occupies 4 registers
2EH~2FH	Reserve	76~B5H	Serial numbers in 1~16 path of channel 2, each serial number occupies 4 registers
30H-3FH	Serial numbers of channel 1~4, each serial number occupies 4 registers	B6~C5H	Reserve
40H-4FH	Reserve	C6H	Channel 1 clears the power-off counts in the configuration
		C7H	Channel 2 clears the power-off counts in the configuration

8.2 Parameter table for 4-channel thermal resistance and thermocouple modules Note: CR code is corresponding to the Modbus register address, the gray parts are read-only ,the white parts are readable and writable.

CR code		Function description				
CR code	TE-4RC	TE-4TC				
00H	Low byte for module code, and high byte for module ve	rsion number				
01H	Communication address					
02H	4 - E,7,1 For ASCII, 5 - O,7,1 For ASCII, 6 - N,8, 1 Fo	0 - N,8,2 For RTU, 1 - E,8,1 For RTU, 2 - O,8,1 For RTU, 3 - N,7,2 For ASCII, r RTU - 9600, 3 - 19200, 4 - 38400, 5 - 57600, 6 - 115200				
03H~06H	Module name					
07H~08H	Default IP address: 192.168.1.111					
09~0AH	Reserve					
0BH	High byte subnet mask (b3~b0,1 indicates 255, 0 indicates 0, for example, subnet mask 255.255.255.0, b3~b0=1110), low byte rese					
0CH-0EH	Reserve					
0FH	Error code: 0-Normal, 1-Illegal firmware identity, 2-Incomplete firmware, 3-System data access exception, 4-No external 24V power supply					
10H	channel 1 input value channel 1 input value					
11H	channel 2 input value channel 2 input value					
12H	channel 3 input value channel 3 input value					
13H	channel 4 input value	channel 4 input value				
14H	channel 1 signal type, note 2	channel 1 signal type, note 3				
15H	channel 2 signal type, note 2	channel 2 signal type, note 3				
16H	channel 3 signal type, note 2 channel 3 signal type, note 3					
17H	channel 4 signal type, note 2 channel 4 signal type, note 3					
18H	Use the engineering value mark, note 5 Use the engineering value mark, note 5					
19H	channel 1 engineering lower limiting value	channel 1 engineering lower limiting value				
1AH	channel 2 engineering lower limiting value	channel 2 engineering lower limiting value				
1BH	channel 3 engineering lower limiting value	channel 3 engineering lower limiting value				
1CH	channel 4 engineering lower limiting value	channel 4 engineering lower limiting value				
1DH	channel 1 engineering upper limiting value	channel 1 engineering upper limiting value				
1EH	channel 2 engineering upper limiting value	channel 2 engineering upper limiting value				
1FH	channel 3 engineering upper limiting value	channel 3 engineering upper limiting value				
20H	channel 4 engineering upper limiting value	channel 4 engineering upper limiting value				
21H	channel 1 sampling frequency, note 1	channel 1 sampling frequency, note 1				
22H	channel 2 sampling frequency, note 1	channel 2 sampling frequency, note 1				
23H	channel 3 sampling frequency, note 1	channel 3 sampling frequency, note 1				
24H	channel 4 sampling frequency, note 1	channel 4 sampling frequency, note 1				
25H	channel 1 zero point correction value	channel 1 zero point correction value				
26H	channel 2 zero point correction value	channel 2 zero point correction value				
27H	channel 3 zero point correction value	channel 3 zero point correction value				
28H	channel 4 zero point correction value	channel 4 zero point correction value				
29H	Channel 1~4 input disconnection alarm, note 4	Channel 1~4 input disconnection alarm, note 4				
2AH	Reserve	Reserve				
2BH~2FH						

CR code	Function	n description				
CR code	TE-8RC	TE-8TC				
00H	Low byte for module code, and high byte for module version numb	er				
01H	Communication address					
		or RTU, 1 - E,8,1 For RTU, 2 - O,8,1 For RTU, 3 - N,7,2 For ASCII,				
02H	4 - E,7,1 For ASCII, 5 - O,7,1 For ASCII, 6 - N,8, 1 For RTU	10000 1 00100 5 57000 0 115000				
	The high 4-bit of the low byte: 0 – 2400, 1 – 4800, 2 – 9600, 3 – 19200, 4 – 38400, 5 – 57600, 6 - 115200					
03H~06H	Module name					
07H~08H 09~0AH	Default IP address:192.168.1.111 Reserve					
09~0AH 0BH		xample subnet mask 255.255.255.0, b3~b0=1110), low byte reserved				
)CH~0EH	Reserve	xample subnet mask 200.200.200.00~00-11107, low byte reserved				
	Error code: 0-Normal, 1-Illegal firmware identity, 2-Incomplete firm	ware 3-System data access exception 4-No external 241/ nower				
0FH	supply					
10H	channel 1 input value	channel 1 input value				
11H	channel 2 input value	channel 2 input value				
12H	channel 3 input value	channel 3 input value				
13H	channel 4 input value	channel 4 input value				
14H	channel 5 input value	channel 5 input value				
15H	channel 6 input value	channel 6 input value				
16H	channel 7 input value	channel 7 input value				
17H	channel 8 input value	channel 8 input value				
18H	channel 1 signal type, note 2	channel 1 signal type, note 3				
19H	channel 2 signal type, note 2	channel 2 signal type, note 3				
1AH	channel 3 signal type, note 2	channel 3 signal type, note 3				
1BH	channel 4 signal type, note 2	channel 4 signal type, note 3				
1CH	channel 5 signal type, note 2	channel 5 signal type, note 3				
1DH	channel 6 signal type, note 2 channel 6 signal type, note 3 channel 7 signal type, note 2 channel 7 signal type, note 3					
1EH						
1FH	channel 8 signal type, note 2 channel 8 signal type, note 3					
20H	Use the engineering value mark, note 5	Use the engineering value mark, note 5				
21H	channel 1 engineering lower limiting value	channel 1 engineering lower limiting value				
22H	channel 2 engineering lower limiting value	channel 2 engineering lower limiting value				
23H	channel 3 engineering lower limiting value	channel 3 engineering lower limiting value				
24H	channel 4 engineering lower limiting value	channel 4 engineering lower limiting value				
25H						
	channel 5 engineering lower limiting value	channel 5 engineering lower limiting value				
26H	channel 6 engineering lower limiting value	channel 6 engineering lower limiting value				
27H	channel 7 engineering lower limiting value	channel 7 engineering lower limiting value				
28H	channel 8 engineering lower limiting value	channel 8 engineering lower limiting value				
29H	channel 1 engineering upper limiting value	channel 1 engineering upper limiting value				
2AH	channel 2 engineering upper limiting value	channel 2 engineering upper limiting value				
2BH	channel 3 engineering upper limiting value	channel 3 engineering upper limiting value				
2CH	channel 4 engineering upper limiting value	channel 4 engineering upper limiting value				
2DH	channel 5 engineering upper limiting value	channel 5 engineering upper limiting value				
2EH	channel 6 engineering upper limiting value	channel 6 engineering upper limiting value				
2FH	channel 7 engineering upper limiting value	channel 7 engineering upper limiting value				
30H	channel 8 engineering upper limiting value	channel 8 engineering upper limiting value				
31H	channel 1 sampling frequency, note 1	channel 1 sampling frequency, note 1				
32H	channel 2 sampling frequency, note 1	channel 2 sampling frequency, note 1				
33H	channel 3 sampling frequency, note 1	channel 3 sampling frequency, note 1				
34H	channel 4 sampling frequency, note 1	channel 4 sampling frequency, note 1				
35H	channel 5 sampling frequency, note 1	channel 5 sampling frequency, note 1				
36H	channel 6 sampling frequency, note 1	channel 6 sampling frequency, note 1				
37H	channel 7 sampling frequency, note 1	channel 7 sampling frequency, note 1				
0/11	channel 7 sampling frequency, note 1 channel 7 sampling frequency, note 1					
38H	channel 8 sampling frequency, note 1	channel 8 sampling frequency, note 1				
	channel 8 sampling frequency, note 1 channel 1 zero point correction value	channel 8 sampling frequency, note 1 channel 1 zero point correction value				

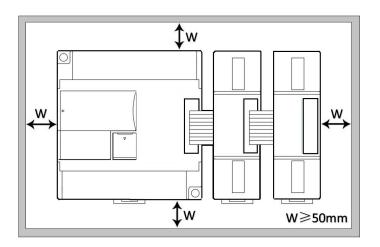
8.3 Parameter table for 8-channel thermal resistance and thermocouple modules

CR code	Function description			
CR code	TE-8RC	TE-8TC		
3BH	channel 3 zero point correction value	channel 3 zero point correction value		
3CH	channel 4 zero point correction value	channel 4 zero point correction value		
3DH	channel 5 zero point correction value	channel 5 zero point correction value		
3EH	channel 6 zero point correction value	channel 6 zero point correction value		
3FH	channel 7 zero point correction value	channel 7 zero point correction value		
40H	channel 8 zero point correction value	channel 8 zero point correction value		
41H	Channel 1~8 input disconnection alarm, note 4	Channel 1~8 input disconnection alarm, note 4		
42H~4FH	Reserve	Reserve		

Note:

- Sampling frequency: 0 2 times, 1 4 times, 2 8 times, 3 16 times, 4 32 times, 5 64 times, 6 128 times, 7 256 times
- ② RTD signal type: 0 Pt100, 1 Pt1000, 2 Cu50, 3 Cu100
- ③ Thermocouple signal type: 0 S, 1 K, 2 T, 3 E, 4 J, 5 B, 6 N, 7 R, 8 Wre3/25, 9- Wre5/26, 10 [0,20]mV, 11 [0,50]mV, 12 [0,100]mV
- ④ Disconnection alarm: Each bit indicates 1 channel, 0-normal, 1-disconnection
- 5. Use the engineering value mark: Each bit indicates 1 channel, 0-No, 1-Yes

9. Expansion modules installation


The PLC should be secured to an enclosed cabinet while mounting. For heat dissipation, make sure to provide a minimum clearance of 50mm between the unit and all sides of the cabinet. (See the figure.)

Rail Mounting: Use standard 35 mm rail.

Screw Mounting: Each MPU or expansion module has two positioning screw holes, the diameter of the hole is 4.5mm. Please refer to the dimension figure for the location of the positioning holes and their spacing.

To avoid over temperature and for a better heat dissipation, do not mount PLC to a position near to the bottom/top of the cabinet. Do not mount PLC in vertical direction.

Expansion Module Wiring: Connections between expansion modules and connections between module and MPU are achieved through bus. One expansion cable will be configured to every expansion module, for the connection between two different modules.Connection methods: turn the right side of extended interface (the last MPU or expansion module) over, plug the expansion cable in the extended interface, then press down the cover of the extended interface to reset the interface, the extended interface at the right side of the module will be reserved for expansion of the next module. Connect all expansion modules in turn in the same way.

Temperature & Humidity modules Application Case

Module used as remote IO 1.

HNC TE series remote module is built-in one RS485 communication port (Some models with Ethernet communication port) supports serial bus(Use the RS485 communication port of module networking with communication port of host PLC, and host PLC controls the remote module by communication instructions), when using the serial bus to expand (that is, remote IO module), it doesn't have expansion limit of system points and can be distributed installation.

Distributed installation is very important for the system which needs to collect and monitor a large number of decentralized digital or analog signals(temperature, humidity, differential pressure, blowing rate, flow, fan speed, valve opening, etc.), it can easily achieve distributed installation control and unlimited points of expansion, greatly improving the control system configuration flexibility and future control expansion capabilities, reducing the number of signal wiring, also reducing the interference problem of too long analog signal line, saving the project investment costs.

The following will introduce the operation key points and techniques of modules used as remote IO.

1.1 Module power supply

When the module is used as remote IO, there are two optional models of 24VDC. If the module is powered normally, the PWR indicator will light.

1.2 Communication port introduction

- 1) All modules are built-in RS485 port.
- 2) As for TE-8RCe support Ethernet port.
- ③ RS485 communication port and Ethernet port can be used at the same time, for example, the RS485 of module communicates with PLC, Ethernet port can also communicates with multiple host computers (up to 7).

1.3 Communication protocols and default parameters

(1) RS485: Support standard Modbus RTU / ASCII protocol, it can communicate with the configuration, touch screen, text display, PLC and other third-party host computer, which must support Modbus protocol. Among them:

Address: 1 ~ 254 can be set; module address is divided into soft address and hard address, hard address has the highest priority.

Soft address: The address set through programming software - remote tool, address range 1-254;

Hard address: The address set through the 4-bit DIP switch of module hardware, address range 1-15. Hardware address setting example:

Station 3 Station 4 Station 5

Baud rate: 2400, 4800, 9600, 19200, 38400, 57600, 115200 optional;

Data format : N, 8, 2 RTU, E, 8, 1 RTU, O, 8, 1 RTU, N, 8, 1 RTU, E, 7, 1 ASCII, O, 7, 1 ASCII, N, 7, 2 ASCII optional.

RS485 default parameter: 19200, N 8 2 RTU, station number is 1.

2 Ethernet +: Support the standard Modbus TCP protocol, it can communicate with the configuration, touch screen, PLC and other third-party host computers, which must support Modbus TCP protocol. Among them:

Ethernet default parameters: IP: 192.168.1.111 Subnet mask: 255.255.255.0 Gateway: 192.168.1.1

1.4 Introduce module parameter configuration method when the module is used as remote IO

There are three ways to configure remote IO parameters:

- ① It can be configured via programming software tools remote modules (recommended);
- ② It can be configured via MODW instructions through the serial communication.

1.5 Parameter configuration example: Configurate module by programming software remote module tool

1.5.1 Hardware connection:

- ① Through the RS485 communication port (the terminals of A +,B- on the module) connection: If the computer has a serial port, you can use the converter of 232 to 485 connecting with the module; if it has one USB interface, you can use the converter of USB to 485 connecting with the module.
- (2) Through the connection of Ethernet + communication interface: You can connect the module with the computer's network port directly by the standard network cable, or take the computer and module connected to the switch.

1.5.2 Software operation steps:

① Click on the the menu bar tool of programming software- "remote module":

HPMaster V2.2.9.200624	
<u>File Edit View PLC Debug</u>	<u>T</u> ools <u>W</u> indows <u>H</u> elp
🗋 🖆 🤔 • 🖪 🎓 🖾 🤤 i	Convert program to IL Batch component comments
	Calculator Check code calculator
	Remote module

Click the button in the pop-up window to open the "Online" window. The module default address is 1,19200, N 8 2 RTU, the online success is as follows:

COM ZigBe	e	⊖ TCP/IP		
Parameters				
	COM12 V	5	Start address:	1 2
Baud rate:	19200 🗸		End address:	1 🗘
Data format:	N,8,2 RTU	~		Find
Find standalone			timeout	200 0 m
Append to list	C) Overlay the list	ameour	200 1
Address:1 TE-8TC				Online
				10059
				C

If there is only one machine connected with 485 line, then check "stand-alone search"; if there are more than one, then remove the button of "stand-alone search", and set the start address and end address, so that all the machines connected with 485 line can be found and achieve parameter configuration.

Click to exit, enter the configuration interface, as shown below:

Offline		arameter Download parameter	Firmware upgrade Export Import Defa		
ddress	Module type	Online mode	Parameters		
1	8TC V2.0	19200,N,8,2	Name		
			Address	1	
			IP address	192.168. 1.111	
			Subnet mask	0.255.255.255	
			Baud rate	3 - 19200	
		Data format	0 - N,8,2 RTU		
			 Analog inputs 		
			⊟ AI0		
			Signal type	3 - E thermocouple	
			Use engineering units	True	
			Upper limit	10000	
			Lower limit	-2000	
			Sample times	5 - [64]	
			Zero point	0	
	PN: 1509171158-021380005 Error code: 0		Al1		
Erro			Signal type	3 - E thermocouple	
	AI: 10000 10000	10000 10000	Use engineering units Upper limit	True	
				10000	
			Lower limit	-2000	
			Sample times	5 - [64]	
			Zero point	0	
			E AI2		
			Signal type	3 - E thermocouple	
			Use engineering units	True	
			Upper limit	10000	
			Lower limit	-2000	
			Sample times	5 - [64]	
			Zero point	0	

We can change the module name, address, IP, subnet mask, baud rate, data format and other communication parameters in the communication parameter area.

Parameters			
Name	H 1 192.168. 1.111 0.255.255.255 3 - 19200 0 - N,8,2 RTU		
Address			
IP address			
Subnet mask			
Baud rate			
Data format			
 Analog inputs 	0 - N,8,2 RTU		
E AIO	1 - E,8,1 RTU		
Signal type	2 - 0,8,1 RTU		
Use engineering units	3 - N,7,2 ASCII 4 - E,7,1 ASCII		
Upper limit	5 - 0.7.1 ASCII		
Lower limit	6 - N,8,1 RTU		

In the external analog input area, we can set the signal type of each channel, choose whether to use engineering value or not((for temperature module, the default use of engineering value)), the upper and lower limits of engineering value(it can be set if you check the use of engineering value), sampling times and zero correction.

Analog inputs All			
Signal type	3 - E thermocouple		
Use engineering units	True		
Upper limit	10000 -2000 5 - [64]		
Lower limit			
Sample times			
Zero point	0		
a Al1			
Signal type	1 - K thermocouple	•	
Use engineering units	0 - S thermocouple	^	
Upper limit	1 - K thermocouple		
Lower limit	2 - T thermocouple		
Sample times	3 - E thermocouple 4 - J thermocouple		
Zero point	5 - B thermocouple		
- Al2	6 - N thermocouple		
Signal type	7 - R thermocouple		
Use engineering units	8 - WRe3/25 thermocouple		
Upper limit	9 - WRe5/26 thermocouple	*	
Lower limit	-2000		

After setting, select the "Download parameter" to download the parameter into the module.

	2	9	住	*		0.	2		0
0	ffline	Start monitor	Upload parameter	Download parameter	Firmware upgrade	Export	Import	Default	Help

In addition, we can do the following operations through the remote module tool:

- ① Online monitor the channel value of module, error code.
- ② Upload the module paramater, upgrade the module firmware, then make the module support new features.
- ③ It can export the module configuration to save or import and restore the default value.

1.6 Remote IO appliciation example(RS485 mode): PLC reads 4-channel temperature value of TE-4RC module

- Hardware wiring: PLC connects to 485 port of module by shielded twisted pair, A + connects to A +, B- connects to B-, if the PLC connects to multiple remote IO modules, it needs to use hand in hand way to connect.
- ② Modbus address: From the above 4-channel analog CR parameter table shows that, the channel 1 ~ 4 input values are stored in 10H ~ 13H of TE-4RC module.
- ③ PLC program: Host PLC wants to read the 4-channel temperature values of remote IO module TE-4RC, 4-channel temperature sensors for PT100, -2000 ~ 8500 indicates -200.0 ~ 850.0 °C. In this example, TE-4RC communication is the default parameter: Station number address is 1, baud rate is 19200, data format is N 8 2 RTU. The program of PLC reads the 4-channel temperature values is as follows:

//Network 1 Module slave 1 baud rate 19200,Date format N,8,2, 4 channels modbus address are 10H-13H, read to v0-v3 register

The host PLC reads the 4-channel temperature values of TE-4RC by Modbus read instruction MODR, the start address is 10H (hexadecimal), that is, the decimal value is 16. When the communication is successful, M0 is ON, the temperature values which are read back will be stored in V0-3, V0=235, indicating that the actual temperature of the first channel is 23.5° C, the same as V3=867, indicating that the actual temperature of the fourth channel is 86.7° C.

1.7 Remote IO appliciation example (Ethernet mode): PLC reads and writes every channel input values of TE-8RCe module

- ① Hardware wiring: PLC and module Ethernet port connected with a shielded network cable, they can be connected directly or through the switch.
- ② Modbus address: From the above TE-8RCe analog module CR parameter table shows that the input values of 8-channel thermal resistance module input channel 1 ~ 8 are stored in the address 10H ~ 17H.
- ③ PLC program: Read the 8-channel measurements of remote Ethernet module TE-8RCe, if the module IP address is 192.168.1.112, station number address is 1, the read results are stored in the V10 ~ V17, as follows:

1.8 Remote IO appliciation example: HTCloud Designer configuration communicates directly with TE-8TC module

 1, Open HTCloud Designer, select the "new project", choose to add the device in the "device", then choose serial port or Ethernet according to the module which supports the Ethernet or RS485, this example for serial port, the serial port number of USB to 485 is COM12, as shown below:

Default parameter 19200 N 8 2 RTU for the module, station number address is 1. And directly select HNC remote module driver in serial port:

Add device		?	×
evice interface:			
● Serial (COM) ○ Ethernet (TCP / IP)	🔘 Cloud data Center	○ mqtt	
Choose device:	Device Properties:		
🖃 🇳 Device	21 2↓		
⊨≪ HNC	High speed frequency(ms)	50	,
- 😂 HC series PLC	Low speed frequency(ms)	1000	
Remote module	Communication timeout(ms)	150	
H Delta	Collection attempt times	1	- 1
T	Communication detect times	3	
🗄 🔨 Fatek	Attempt interval(ms)	2000	
⊕ VIGOR	Failures ceiling	3	
🖶 🖘 PAN-GLOBE	Reconnection ceiling	0	
🗄 🗝 📎 Panasoni c	High and Low Word	CD AB	
🖽 🐀 Xinje	Block length	48	
+	🖃 COX parameters		
🕀 🔨 Mi tsubi shi	COM port	COM1	
	Device station number	1	
⊞SOMERON	Communication Type	RS-232	
🕀 – 🔨 HollySys	Protocol	Modbus	
⊕≪ IDEC	Baud rate	19200	
🗄 🐀 Yokogawa	Data bits	8	
🕂 🐨 YuDian	Parity check	None	
. Koyoele	Stop bit	2	
E	Flow control	None	
T	🖃 Device information		
TIANYI	Device name	HNC_Extend_Nodule_1	
🖶 ···· 🌕 HCFA	Device description		_
🖶 🐀 Other Protocol	Device name		
🗄 🍆 Common			
		OK Cance	el

Click OK, then we are prompted to start set up variables, the establishment of eight variables indicates 8 channels:

		Variable name	Register type	Register address	Address length	Data type	Read-write mode	Acquisition frequency	Variable description
•	1	CR16	CR	16		l Integer	Read and write	Normal	
	2	CR17	CR	17	j.	l Integer	Read and write	Normal	
	3	CR18	CR	18		l Integer	Read and write	Normal	
	4	CR19	CR	19		l Integer	Read and write	Normal	
	5	CR20	CR	20		l Integer	Read and write	Normal	
	6	CR21	CR	21		l Integer	Read and write	Normal	
	7	CR22	CR	22		l Integer	Read and write	Normal	
	8	CR23	CR	23	1	l Integer	Read and write	Normal	

Then set up the screen, we can use the display primitives to bind the corresponding channel variable values. If you need to display the decimal places, it can set the corresponding decimal places on the display primitive. As shown below:

meric input/display				?
nbol name NumShowIput_1				
asic Advanced Shape Common				
Setting	Display			
Read variable	🗹 Display the minus sign	🗌 The	content is shown as *	
[1. CR16	Show thousands placeholder(,)			
Input [□ Shwo left label	Sho	w right label	
Write variable is different from reade	variable Left label	Right	1.1.1	
Written variable	Lett label	Ki ght	TapeT	
			1 - 11 - 1	10.00
Input maximum	Integer digits		l digits	E. C.
999	4	÷ 1		
Input minimum	Text alignment	Font		
-999	Center	~	SelectFont	
Keyboard type	Text color			
Numeric keyboard		1		
Keyboard position				
center	~			

1.9 TE-32DT module usage features introduction

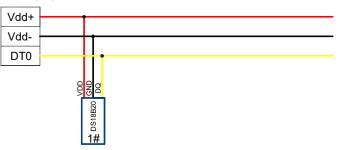
TE-32DT supports sensor signal types: DS18B20, RW1820, DS1990.

Module parameters: TE-32DT module has 2 channels, each channel can measure the maximum 16 points of temperature, a total of 32 temperature points can be measured. Measuring temperature range: -55 ~ +125 °C, \leq 200m distance to per channel (line resistance 50 Ω). So, how to use the TE-32DT module properly?

The following are the main points of this section:

- ① Remote module tool usage;
- ② How to wire sensor?
- (3) how to replace broken sensor?
- (4) how to replace broken module?

First, let's look at the hardware wiring. How to connect TE-32DT with the remote module tools of PLC software?

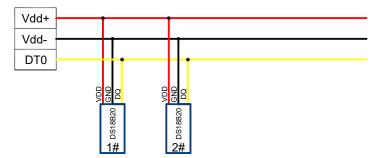

Hardware connection and power supply: PC-side USB transferred to 485 (PC with serial port can also use 232-to-485 converter), then connected to the communication port A + B- of 485 in TE-32DT module. TE-32DT module is powered by DC24V switching power supply. After the module is powered on, then click the menu bar tools - Remote module - Online, when online successfully, you will see:

● COM Z	/igBee	O TCP/IP	
Parameters			
	Port: COM12 V		Start address: 1 🗘
Baudu	rate: 19200 🗸		End address: 1 \$
Data for	mat: N,8,2 RTU	~	Find
Find standalone			timeout: 200 🗘 ı
Append to list		Overlay the list	
Address:1 32	DT		Online

Click "exit", or "×" to exit. In the absence of sensors, the default parameters of the module are shown below:

	te module	5 ⁴		
Offline			irmware upgrade Export Import Default Help	
dress	Module type	Online mode	- Parameters	
1	32DT V1.2	19200.N.8.2	Name 32DT	
			Address 1	
			IP address 0, 0, 0, 0	
			Subnet mask 0.255.255.255	
			Baud rate 3 - 19200	
			Data format 0 - N.8.2 RTU	
			- Channel 1	
			A/D Data bits 2 -11bit	
			Sensor configuration number 7	
			No:1 Sensor serial number 3904 16A0 A719 F	F28
			No:2 Sensor serial number 4705 16A0 AF6E F	F28
			No:3 Sensor serial number F105 16A0 C81F F	F28
			No:4 Sensor serial number 2805 16A0 C7B4	FF28
			No:5 Sensor serial number 0504 16A0 8EB4 F	F28
	PN: 1601181173-0115	10020	No:6 Sensor serial number BB05 16A0 C301	FF28
Erro	or code: 0		No:7 Sensor serial number EA04 16A0 C1E4	FF28
1.1.2			No:8 Sensor serial number	
Cha	annel 1: 0 0	0 0	No:9 Sensor serial number	
	0 0	0 0	No:10 Sensor serial number	
	0 0	0 0	No:11 Sensor serial number	
	0 0	0 0	No:12 Sensor serial number	
Cha	annel 2: 0 0	0 0	No:13 Sensor serial number	
	0 0	0 0	No:14 Sensor serial number	
	0 0	0 0	No:15 Sensor serial number	
	0 0	0 0	No:16 Sensor serial number	
			E Channel 2	
			A/D Data bits 2 -11bit	
			Sensor configuration number 16	

Then, we start to access sensors (the strict wiring diagram please refer to the above digital module wiring diagram), as shown in the following figure, we access the first sensor # 1:



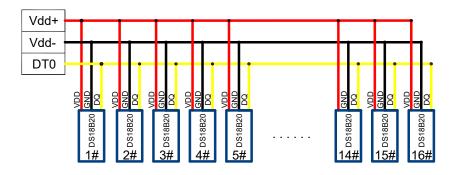
Click on "monitor", we can see 1 # sensor temperature value of channel 1 in the software, exit "monitor", click the "parameter upload", then you can view the serial numbers of the sensor. Read 1 # sensor temperature value and serial number as shown below:

- () Numerical 251 indicates that the current temperature is 25.1° C;
- ② No: 1 sensor serial number: 3904 16A0 A719 FF28, that is, 1# sensor serial number;
- ③ Numerical 1250 indicates that the maximum value of engineering quantity displayed by the channel (-55 ~ + 125℃, that is, -550 ~ 1250) when the sensor is not connected.

Offline		rameter Download param		fault Help
Address	Module type	Online mode	Parameters	
1	32DT V1.2	19200,N,8,2	Name	TE-32DT
			Address	1
			IP address	0. 0. 0. 0
			Subnet mask	0.255.255.255
			Baud rate	3 - 19200
			Data format	0 - N,8,2 RTU
			Channel 1	
	(1) (2)	A/D Data bits	2 -11bit	
			7	
			No:1 Sensor serial number	3904 16A0 A719 FF28
			No:2 Sensor serial number	4705 16A0 AF6E FF28
			No:3 Sensor serial number	F105 16A0 C81F FF28
			No:4 Sensor serial number	2805 16A0 C7B4 FF28
			No:5 Sensor serial number	0504 16A0 8EB4 FF28
	PN: 160118 173-0115	10020	No:6 Sensor serial number	BB05 16A0 C301 FF28
Erro	orcode: 0 📕		No:7 Sensor serial number	EA04 16A0 C1E4 FF28
Cha	annel 1: 251 1250	252 250	No:8 Sensor serial number	
Unit	254 251	252 1250	No:9 Sensor serial number	<u> </u>
	1250 1250	1250 1250	No:10 Sensor serial number	
	1250 1250	1250 1250	No:11 Sensor serial number	
			No:12 Sensor serial number	
Cha	annel 2: 267 272	272 275	No:13 Sensor serial number	
	272 275	265 272	No:14 Sensor serial number	
	275 272	275 270	No:15 Sensor serial number	
	275 1250	271 273	No:16 Sensor serial number	
			Channel 2	
			A/D Data bits	2 -11bit
			Sensor configuration number	16

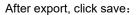
Then we access the second sensor (for the strict wiring diagram, please refer to the above digital module wiring diagram), the access interval time of adjacent sensors should be greater than 10 seconds. Wiring diagram is as follows:

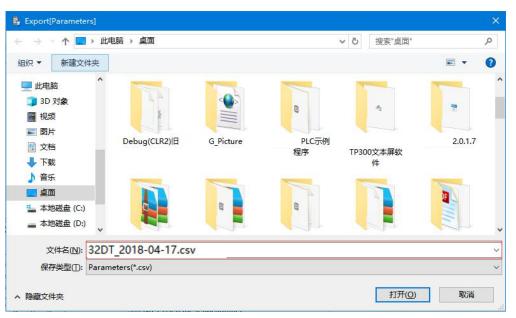
The read temperature and serial number as follows:



Channel 1:	248	253	253	247
	254	250	255	1250
	1250	1250	1250	1250
	1250	1250	1250	1250
Channel 1			1	0.4453
A/D Data bits				2 -11bit
Sensor configurati	on number	8		7
No:1 Sensor seria	number		3904 16A0 A719 FF28	
No:2 Sensor seria	number			4705 16A0 AF6E FF28

-


-


And so on, then we follow the order, from left to right continue to install sensors (adjacent sensors access interval needs more than 10 seconds), until the 16th sensor, which will record the temperature of each channel and the serial number.

After the 16 sensors of channel 1 accessed, channel 2 is accessed in the same way, when accessed, we follow the way from near to far or from far to near. After finishing the access of all sensors, we have to save the configuration parameters of TE-32DT module, this step is very important! (The back will introduce the application occasions). The specific operation is as follows, in the menu bar of remote module tool has an export function, we click export:

📲 Remo	te module							
-	9	艦	🕍 Download parameter	•	0. ₂	2		0
Offline	Start monitor	Upload parameter	Download parameter	Firmware upgrade	Export	Import	Default	Help

The above operation, the module line is connected, the parameters are also saved. Next host PLC needs to read the temperature from the module.

TE-32DT can communicate with the host PLC through the 485 port, TE-32DT used as the remote IO, it can communicate with the host PLC.

We can see according to the online help of PLC software - Hardware Manual - Expansion Module Parameters - Digital Temperature And Humidity Module Parameter Table, or the above 《Digital Temperature and Humidity Module Parameter Table》, the temperature values of channels 1 and 2 exist in the module CR register.

Channel 1: 10H ~ 1FH; Channel 2: 20H ~ 2FH.

When the module is used for remote IO, the module is connected to the host PLC through the A + B- of serial RS485. The module default baud rate is 19200, data format is N 8 2 RTU, the default station number defaults to 1 and supports Modbus protocol. So communication program is as follows:

//Network 6 32DT Slave1, rate 19200, Date format N,8,2, RTU, thirty-two temperature storage in 10H-2FH, read to V300-331 register

The above introduce the normal use steps and methods for TE-32DT. Then we will introduce how to deal with the common problems and on-site problems when using TE-32DT.

FAQ for TE-32DT module

① If multiple sensors are connected before the TE-32DT module is powered on, then what will happen if the TE-32DT module is powered on again?

A: If multiple sensors are connected before the TE-32DT module is powered on, at this time, power on the TE-32DT module, then the TE-32DT module will automatically search all the sensors and randomly write them into the registers (CR10H \sim 2FH), that is, the order is out of order. So we can see the sequence of operation steps is very important. First, give the module power supply, and then according to the sequence from near to far, or from far to near to access sensors.

② If in the process of using, one of the temperature sensors is broken(any position), how to replace the sensor at this time?

A: The module does not need to be powered down, simply remove the damaged sensor, put a new one, then TE-32DT module will automatically identify and determine it. The temperature read by new sensor will automatically replace the damaged sensor, without affecting the other normal sensors' temperature acquisition.

③ If in the process of using, multiple temperature sensors are broken(any position, such as 3), how to replace these sensors at this time?

A: Just remove these damaged sensors and replace them with new ones in order.

The sequence here that is described earlier, it means the sequence of access sensors at the beginning, from near to far or from far to near. For example, the 16 sensors of channel 1 begin to be accessed from near to far in order, when using, the 2 #, 7 # and 13 # sensors are broken. At this point, the module need't power off, remove the 2 #, 7 #, 13 # sensors, put on new ones, according to the sequence, first access to the original position 2 # sensor, then 7 #, and finally the sensor position 13 #. In this way, the TE-32DT module will automatically identify and determine, the temperature values read by new sensors will automatically replace the damaged sensor, without affecting the other normal sensors' temperature acquisition.

In a similar way, if accessing to sensors according to from far to near, then when replacing them also from far to near.

④ If in the process of using, TE-32DT module itself is damaged, at this time, how to deal with to make sure that the sensors configured in front of are still the same order and can work normally?

A: The method for saving the module parameters was introduced in the previous section. Here you can use this configuration parameter to reflect the importance of the TE-32DT module configuration parameters.

TE-32DT module is damaged, at this moment, we only need to import the previously saved module parameters to new TE-32DT module through the remote module tool, import the previous configuration table, and finally click parameters download to download the parameters into the module.

2	9	(Line) (Line)	*		0.	8	123	0
Offline	Start monitor	Upload parameter	Download parameter	Firmware upgrade	Export	Import	Default	Help

The each position's temperature value and the sequence of the module will be consistent with the previous module. This can be very convenient to solve the replacement damaged modules problems.

(5) The 4th point introduces the inportance of TE-32DT module parameter table, so does it mean that we should re-save a parameter table every time after replacing the probe?

A: Yes. After replacement each time, save a copy, this is a very rigorous and safe operation.

⑥ In the actual application, how to clear the TE-32DT module parameter configuration?

A: There are two ways, one for software removal configuration and one for hardware removal configuration. The following introduction:

Software removal configuration, click the default value in the channel without accessing any sensor, then click the parameter download to clear the configuration (sensor serial number).

Hardware removal configuration, configuration can be cleared (sensor serial number) by powering off and powering on the module for three times without accessing any sensor in the channel. The times of channel removal power-down configuration can be viewed in CRC6H and CRC7H.

⑦ TE-32DT channel indicator on the module is 0 and 1, what are the states of always-on and flashing?

A: 0 and 1 always-on means that the channel is working normally, flashing indicates that the sensor is disconnected.

⑧ For TE-32DT module, how to do the channel sensor communication break alarm?

When the module is used as remote IO, the module and the host PLC are connected via RS485 serial port of A+B-. The default baud rate of module is 19200, the data format is N 8 2 RTU, the default station number is 1, supporting Modbus protocol. Disconnected alarm of CR32~33 channels are read back in V32V33. Through WTOB, we know that M300~315 are obtained as the disconnected alarm status bits corresponding to the 16 sensors in channel 1. M316~331 are the disconnected alarm status bits corresponding to the 16 sensors in channel 1. M316~331 are the disconnected alarm status bits corresponding to the 16 sensors in channel 2, so the communication program is as follows:

(9) What is the role of configuring the number of sensors?

A: If the number of sensors in the TE-32DT channel is less than the number of configured sensors, then the corresponding indicator of channel 0 and channel 1 will flash and alarm. When the actual number of sensors is greater than or equal to this configuration number, no alarm is issued.

(1) What does numerical value of 850 mean when monitoring?

A: Check the manual of DS18B20 chip, find that the ground wire of the 850th-bit chip is dangling, so check the sensor wiring.

Thanks for choosing HNC Products, If you have any questions about our products or services, please let us know! Website: www.hncelectric.com